A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/numpy/lib/stride_tricks.pyi

80 lines
1.7 KiB

from collections.abc import Iterable
from typing import Any, TypeVar, overload, SupportsIndex
from numpy import generic
from numpy._typing import (
NDArray,
ArrayLike,
_ShapeLike,
_Shape,
_ArrayLike
)
_SCT = TypeVar("_SCT", bound=generic)
__all__: list[str]
class DummyArray:
__array_interface__: dict[str, Any]
base: None | NDArray[Any]
def __init__(
self,
interface: dict[str, Any],
base: None | NDArray[Any] = ...,
) -> None: ...
@overload
def as_strided(
x: _ArrayLike[_SCT],
shape: None | Iterable[int] = ...,
strides: None | Iterable[int] = ...,
subok: bool = ...,
writeable: bool = ...,
) -> NDArray[_SCT]: ...
@overload
def as_strided(
x: ArrayLike,
shape: None | Iterable[int] = ...,
strides: None | Iterable[int] = ...,
subok: bool = ...,
writeable: bool = ...,
) -> NDArray[Any]: ...
@overload
def sliding_window_view(
x: _ArrayLike[_SCT],
window_shape: int | Iterable[int],
axis: None | SupportsIndex = ...,
*,
subok: bool = ...,
writeable: bool = ...,
) -> NDArray[_SCT]: ...
@overload
def sliding_window_view(
x: ArrayLike,
window_shape: int | Iterable[int],
axis: None | SupportsIndex = ...,
*,
subok: bool = ...,
writeable: bool = ...,
) -> NDArray[Any]: ...
@overload
def broadcast_to(
array: _ArrayLike[_SCT],
shape: int | Iterable[int],
subok: bool = ...,
) -> NDArray[_SCT]: ...
@overload
def broadcast_to(
array: ArrayLike,
shape: int | Iterable[int],
subok: bool = ...,
) -> NDArray[Any]: ...
def broadcast_shapes(*args: _ShapeLike) -> _Shape: ...
def broadcast_arrays(
*args: ArrayLike,
subok: bool = ...,
) -> list[NDArray[Any]]: ...