A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/numpy/lib/shape_base.pyi

215 lines
5.1 KiB

from collections.abc import Callable, Sequence
from typing import TypeVar, Any, overload, SupportsIndex, Protocol
from numpy import (
generic,
integer,
ufunc,
bool_,
unsignedinteger,
signedinteger,
floating,
complexfloating,
object_,
)
from numpy._typing import (
ArrayLike,
NDArray,
_ShapeLike,
_ArrayLike,
_ArrayLikeBool_co,
_ArrayLikeUInt_co,
_ArrayLikeInt_co,
_ArrayLikeFloat_co,
_ArrayLikeComplex_co,
_ArrayLikeObject_co,
)
from numpy.core.shape_base import vstack
_SCT = TypeVar("_SCT", bound=generic)
# The signatures of `__array_wrap__` and `__array_prepare__` are the same;
# give them unique names for the sake of clarity
class _ArrayWrap(Protocol):
def __call__(
self,
array: NDArray[Any],
context: None | tuple[ufunc, tuple[Any, ...], int] = ...,
/,
) -> Any: ...
class _ArrayPrepare(Protocol):
def __call__(
self,
array: NDArray[Any],
context: None | tuple[ufunc, tuple[Any, ...], int] = ...,
/,
) -> Any: ...
class _SupportsArrayWrap(Protocol):
@property
def __array_wrap__(self) -> _ArrayWrap: ...
class _SupportsArrayPrepare(Protocol):
@property
def __array_prepare__(self) -> _ArrayPrepare: ...
__all__: list[str]
row_stack = vstack
def take_along_axis(
arr: _SCT | NDArray[_SCT],
indices: NDArray[integer[Any]],
axis: None | int,
) -> NDArray[_SCT]: ...
def put_along_axis(
arr: NDArray[_SCT],
indices: NDArray[integer[Any]],
values: ArrayLike,
axis: None | int,
) -> None: ...
# TODO: Use PEP 612 `ParamSpec` once mypy supports `Concatenate`
# xref python/mypy#8645
@overload
def apply_along_axis(
func1d: Callable[..., _ArrayLike[_SCT]],
axis: SupportsIndex,
arr: ArrayLike,
*args: Any,
**kwargs: Any,
) -> NDArray[_SCT]: ...
@overload
def apply_along_axis(
func1d: Callable[..., ArrayLike],
axis: SupportsIndex,
arr: ArrayLike,
*args: Any,
**kwargs: Any,
) -> NDArray[Any]: ...
def apply_over_axes(
func: Callable[[NDArray[Any], int], NDArray[_SCT]],
a: ArrayLike,
axes: int | Sequence[int],
) -> NDArray[_SCT]: ...
@overload
def expand_dims(
a: _ArrayLike[_SCT],
axis: _ShapeLike,
) -> NDArray[_SCT]: ...
@overload
def expand_dims(
a: ArrayLike,
axis: _ShapeLike,
) -> NDArray[Any]: ...
@overload
def column_stack(tup: Sequence[_ArrayLike[_SCT]]) -> NDArray[_SCT]: ...
@overload
def column_stack(tup: Sequence[ArrayLike]) -> NDArray[Any]: ...
@overload
def dstack(tup: Sequence[_ArrayLike[_SCT]]) -> NDArray[_SCT]: ...
@overload
def dstack(tup: Sequence[ArrayLike]) -> NDArray[Any]: ...
@overload
def array_split(
ary: _ArrayLike[_SCT],
indices_or_sections: _ShapeLike,
axis: SupportsIndex = ...,
) -> list[NDArray[_SCT]]: ...
@overload
def array_split(
ary: ArrayLike,
indices_or_sections: _ShapeLike,
axis: SupportsIndex = ...,
) -> list[NDArray[Any]]: ...
@overload
def split(
ary: _ArrayLike[_SCT],
indices_or_sections: _ShapeLike,
axis: SupportsIndex = ...,
) -> list[NDArray[_SCT]]: ...
@overload
def split(
ary: ArrayLike,
indices_or_sections: _ShapeLike,
axis: SupportsIndex = ...,
) -> list[NDArray[Any]]: ...
@overload
def hsplit(
ary: _ArrayLike[_SCT],
indices_or_sections: _ShapeLike,
) -> list[NDArray[_SCT]]: ...
@overload
def hsplit(
ary: ArrayLike,
indices_or_sections: _ShapeLike,
) -> list[NDArray[Any]]: ...
@overload
def vsplit(
ary: _ArrayLike[_SCT],
indices_or_sections: _ShapeLike,
) -> list[NDArray[_SCT]]: ...
@overload
def vsplit(
ary: ArrayLike,
indices_or_sections: _ShapeLike,
) -> list[NDArray[Any]]: ...
@overload
def dsplit(
ary: _ArrayLike[_SCT],
indices_or_sections: _ShapeLike,
) -> list[NDArray[_SCT]]: ...
@overload
def dsplit(
ary: ArrayLike,
indices_or_sections: _ShapeLike,
) -> list[NDArray[Any]]: ...
@overload
def get_array_prepare(*args: _SupportsArrayPrepare) -> _ArrayPrepare: ...
@overload
def get_array_prepare(*args: object) -> None | _ArrayPrepare: ...
@overload
def get_array_wrap(*args: _SupportsArrayWrap) -> _ArrayWrap: ...
@overload
def get_array_wrap(*args: object) -> None | _ArrayWrap: ...
@overload
def kron(a: _ArrayLikeBool_co, b: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
@overload
def kron(a: _ArrayLikeUInt_co, b: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def kron(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
@overload
def kron(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
@overload
def kron(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def kron(a: _ArrayLikeObject_co, b: Any) -> NDArray[object_]: ...
@overload
def kron(a: Any, b: _ArrayLikeObject_co) -> NDArray[object_]: ...
@overload
def tile(
A: _ArrayLike[_SCT],
reps: int | Sequence[int],
) -> NDArray[_SCT]: ...
@overload
def tile(
A: ArrayLike,
reps: int | Sequence[int],
) -> NDArray[Any]: ...