A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/numpy/lib/index_tricks.pyi

162 lines
4.1 KiB

from collections.abc import Sequence
from typing import (
Any,
TypeVar,
Generic,
overload,
Literal,
SupportsIndex,
)
from numpy import (
# Circumvent a naming conflict with `AxisConcatenator.matrix`
matrix as _Matrix,
ndenumerate as ndenumerate,
ndindex as ndindex,
ndarray,
dtype,
integer,
str_,
bytes_,
bool_,
int_,
float_,
complex_,
intp,
_OrderCF,
_ModeKind,
)
from numpy._typing import (
# Arrays
ArrayLike,
_NestedSequence,
_FiniteNestedSequence,
NDArray,
_ArrayLikeInt,
# DTypes
DTypeLike,
_SupportsDType,
# Shapes
_ShapeLike,
)
from numpy.core.multiarray import (
unravel_index as unravel_index,
ravel_multi_index as ravel_multi_index,
)
_T = TypeVar("_T")
_DType = TypeVar("_DType", bound=dtype[Any])
_BoolType = TypeVar("_BoolType", Literal[True], Literal[False])
_TupType = TypeVar("_TupType", bound=tuple[Any, ...])
_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
__all__: list[str]
@overload
def ix_(*args: _FiniteNestedSequence[_SupportsDType[_DType]]) -> tuple[ndarray[Any, _DType], ...]: ...
@overload
def ix_(*args: str | _NestedSequence[str]) -> tuple[NDArray[str_], ...]: ...
@overload
def ix_(*args: bytes | _NestedSequence[bytes]) -> tuple[NDArray[bytes_], ...]: ...
@overload
def ix_(*args: bool | _NestedSequence[bool]) -> tuple[NDArray[bool_], ...]: ...
@overload
def ix_(*args: int | _NestedSequence[int]) -> tuple[NDArray[int_], ...]: ...
@overload
def ix_(*args: float | _NestedSequence[float]) -> tuple[NDArray[float_], ...]: ...
@overload
def ix_(*args: complex | _NestedSequence[complex]) -> tuple[NDArray[complex_], ...]: ...
class nd_grid(Generic[_BoolType]):
sparse: _BoolType
def __init__(self, sparse: _BoolType = ...) -> None: ...
@overload
def __getitem__(
self: nd_grid[Literal[False]],
key: slice | Sequence[slice],
) -> NDArray[Any]: ...
@overload
def __getitem__(
self: nd_grid[Literal[True]],
key: slice | Sequence[slice],
) -> list[NDArray[Any]]: ...
class MGridClass(nd_grid[Literal[False]]):
def __init__(self) -> None: ...
mgrid: MGridClass
class OGridClass(nd_grid[Literal[True]]):
def __init__(self) -> None: ...
ogrid: OGridClass
class AxisConcatenator:
axis: int
matrix: bool
ndmin: int
trans1d: int
def __init__(
self,
axis: int = ...,
matrix: bool = ...,
ndmin: int = ...,
trans1d: int = ...,
) -> None: ...
@staticmethod
@overload
def concatenate( # type: ignore[misc]
*a: ArrayLike, axis: SupportsIndex = ..., out: None = ...
) -> NDArray[Any]: ...
@staticmethod
@overload
def concatenate(
*a: ArrayLike, axis: SupportsIndex = ..., out: _ArrayType = ...
) -> _ArrayType: ...
@staticmethod
def makemat(
data: ArrayLike, dtype: DTypeLike = ..., copy: bool = ...
) -> _Matrix: ...
# TODO: Sort out this `__getitem__` method
def __getitem__(self, key: Any) -> Any: ...
class RClass(AxisConcatenator):
axis: Literal[0]
matrix: Literal[False]
ndmin: Literal[1]
trans1d: Literal[-1]
def __init__(self) -> None: ...
r_: RClass
class CClass(AxisConcatenator):
axis: Literal[-1]
matrix: Literal[False]
ndmin: Literal[2]
trans1d: Literal[0]
def __init__(self) -> None: ...
c_: CClass
class IndexExpression(Generic[_BoolType]):
maketuple: _BoolType
def __init__(self, maketuple: _BoolType) -> None: ...
@overload
def __getitem__(self, item: _TupType) -> _TupType: ... # type: ignore[misc]
@overload
def __getitem__(self: IndexExpression[Literal[True]], item: _T) -> tuple[_T]: ...
@overload
def __getitem__(self: IndexExpression[Literal[False]], item: _T) -> _T: ...
index_exp: IndexExpression[Literal[True]]
s_: IndexExpression[Literal[False]]
def fill_diagonal(a: ndarray[Any, Any], val: Any, wrap: bool = ...) -> None: ...
def diag_indices(n: int, ndim: int = ...) -> tuple[NDArray[int_], ...]: ...
def diag_indices_from(arr: ArrayLike) -> tuple[NDArray[int_], ...]: ...
# NOTE: see `numpy/__init__.pyi` for `ndenumerate` and `ndindex`