A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/numpy/lib/arraysetops.pyi

360 lines
8.1 KiB

from typing import (
Literal as L,
Any,
TypeVar,
overload,
SupportsIndex,
)
from numpy import (
generic,
number,
bool_,
ushort,
ubyte,
uintc,
uint,
ulonglong,
short,
int8,
byte,
intc,
int_,
intp,
longlong,
half,
single,
double,
longdouble,
csingle,
cdouble,
clongdouble,
timedelta64,
datetime64,
object_,
str_,
bytes_,
void,
)
from numpy._typing import (
ArrayLike,
NDArray,
_ArrayLike,
_ArrayLikeBool_co,
_ArrayLikeDT64_co,
_ArrayLikeTD64_co,
_ArrayLikeObject_co,
_ArrayLikeNumber_co,
)
_SCT = TypeVar("_SCT", bound=generic)
_NumberType = TypeVar("_NumberType", bound=number[Any])
# Explicitly set all allowed values to prevent accidental castings to
# abstract dtypes (their common super-type).
#
# Only relevant if two or more arguments are parametrized, (e.g. `setdiff1d`)
# which could result in, for example, `int64` and `float64`producing a
# `number[_64Bit]` array
_SCTNoCast = TypeVar(
"_SCTNoCast",
bool_,
ushort,
ubyte,
uintc,
uint,
ulonglong,
short,
byte,
intc,
int_,
longlong,
half,
single,
double,
longdouble,
csingle,
cdouble,
clongdouble,
timedelta64,
datetime64,
object_,
str_,
bytes_,
void,
)
__all__: list[str]
@overload
def ediff1d(
ary: _ArrayLikeBool_co,
to_end: None | ArrayLike = ...,
to_begin: None | ArrayLike = ...,
) -> NDArray[int8]: ...
@overload
def ediff1d(
ary: _ArrayLike[_NumberType],
to_end: None | ArrayLike = ...,
to_begin: None | ArrayLike = ...,
) -> NDArray[_NumberType]: ...
@overload
def ediff1d(
ary: _ArrayLikeNumber_co,
to_end: None | ArrayLike = ...,
to_begin: None | ArrayLike = ...,
) -> NDArray[Any]: ...
@overload
def ediff1d(
ary: _ArrayLikeDT64_co | _ArrayLikeTD64_co,
to_end: None | ArrayLike = ...,
to_begin: None | ArrayLike = ...,
) -> NDArray[timedelta64]: ...
@overload
def ediff1d(
ary: _ArrayLikeObject_co,
to_end: None | ArrayLike = ...,
to_begin: None | ArrayLike = ...,
) -> NDArray[object_]: ...
@overload
def unique(
ar: _ArrayLike[_SCT],
return_index: L[False] = ...,
return_inverse: L[False] = ...,
return_counts: L[False] = ...,
axis: None | SupportsIndex = ...,
*,
equal_nan: bool = ...,
) -> NDArray[_SCT]: ...
@overload
def unique(
ar: ArrayLike,
return_index: L[False] = ...,
return_inverse: L[False] = ...,
return_counts: L[False] = ...,
axis: None | SupportsIndex = ...,
*,
equal_nan: bool = ...,
) -> NDArray[Any]: ...
@overload
def unique(
ar: _ArrayLike[_SCT],
return_index: L[True] = ...,
return_inverse: L[False] = ...,
return_counts: L[False] = ...,
axis: None | SupportsIndex = ...,
*,
equal_nan: bool = ...,
) -> tuple[NDArray[_SCT], NDArray[intp]]: ...
@overload
def unique(
ar: ArrayLike,
return_index: L[True] = ...,
return_inverse: L[False] = ...,
return_counts: L[False] = ...,
axis: None | SupportsIndex = ...,
*,
equal_nan: bool = ...,
) -> tuple[NDArray[Any], NDArray[intp]]: ...
@overload
def unique(
ar: _ArrayLike[_SCT],
return_index: L[False] = ...,
return_inverse: L[True] = ...,
return_counts: L[False] = ...,
axis: None | SupportsIndex = ...,
*,
equal_nan: bool = ...,
) -> tuple[NDArray[_SCT], NDArray[intp]]: ...
@overload
def unique(
ar: ArrayLike,
return_index: L[False] = ...,
return_inverse: L[True] = ...,
return_counts: L[False] = ...,
axis: None | SupportsIndex = ...,
*,
equal_nan: bool = ...,
) -> tuple[NDArray[Any], NDArray[intp]]: ...
@overload
def unique(
ar: _ArrayLike[_SCT],
return_index: L[False] = ...,
return_inverse: L[False] = ...,
return_counts: L[True] = ...,
axis: None | SupportsIndex = ...,
*,
equal_nan: bool = ...,
) -> tuple[NDArray[_SCT], NDArray[intp]]: ...
@overload
def unique(
ar: ArrayLike,
return_index: L[False] = ...,
return_inverse: L[False] = ...,
return_counts: L[True] = ...,
axis: None | SupportsIndex = ...,
*,
equal_nan: bool = ...,
) -> tuple[NDArray[Any], NDArray[intp]]: ...
@overload
def unique(
ar: _ArrayLike[_SCT],
return_index: L[True] = ...,
return_inverse: L[True] = ...,
return_counts: L[False] = ...,
axis: None | SupportsIndex = ...,
*,
equal_nan: bool = ...,
) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ...
@overload
def unique(
ar: ArrayLike,
return_index: L[True] = ...,
return_inverse: L[True] = ...,
return_counts: L[False] = ...,
axis: None | SupportsIndex = ...,
*,
equal_nan: bool = ...,
) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ...
@overload
def unique(
ar: _ArrayLike[_SCT],
return_index: L[True] = ...,
return_inverse: L[False] = ...,
return_counts: L[True] = ...,
axis: None | SupportsIndex = ...,
*,
equal_nan: bool = ...,
) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ...
@overload
def unique(
ar: ArrayLike,
return_index: L[True] = ...,
return_inverse: L[False] = ...,
return_counts: L[True] = ...,
axis: None | SupportsIndex = ...,
*,
equal_nan: bool = ...,
) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ...
@overload
def unique(
ar: _ArrayLike[_SCT],
return_index: L[False] = ...,
return_inverse: L[True] = ...,
return_counts: L[True] = ...,
axis: None | SupportsIndex = ...,
*,
equal_nan: bool = ...,
) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ...
@overload
def unique(
ar: ArrayLike,
return_index: L[False] = ...,
return_inverse: L[True] = ...,
return_counts: L[True] = ...,
axis: None | SupportsIndex = ...,
*,
equal_nan: bool = ...,
) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ...
@overload
def unique(
ar: _ArrayLike[_SCT],
return_index: L[True] = ...,
return_inverse: L[True] = ...,
return_counts: L[True] = ...,
axis: None | SupportsIndex = ...,
*,
equal_nan: bool = ...,
) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp], NDArray[intp]]: ...
@overload
def unique(
ar: ArrayLike,
return_index: L[True] = ...,
return_inverse: L[True] = ...,
return_counts: L[True] = ...,
axis: None | SupportsIndex = ...,
*,
equal_nan: bool = ...,
) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp], NDArray[intp]]: ...
@overload
def intersect1d(
ar1: _ArrayLike[_SCTNoCast],
ar2: _ArrayLike[_SCTNoCast],
assume_unique: bool = ...,
return_indices: L[False] = ...,
) -> NDArray[_SCTNoCast]: ...
@overload
def intersect1d(
ar1: ArrayLike,
ar2: ArrayLike,
assume_unique: bool = ...,
return_indices: L[False] = ...,
) -> NDArray[Any]: ...
@overload
def intersect1d(
ar1: _ArrayLike[_SCTNoCast],
ar2: _ArrayLike[_SCTNoCast],
assume_unique: bool = ...,
return_indices: L[True] = ...,
) -> tuple[NDArray[_SCTNoCast], NDArray[intp], NDArray[intp]]: ...
@overload
def intersect1d(
ar1: ArrayLike,
ar2: ArrayLike,
assume_unique: bool = ...,
return_indices: L[True] = ...,
) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ...
@overload
def setxor1d(
ar1: _ArrayLike[_SCTNoCast],
ar2: _ArrayLike[_SCTNoCast],
assume_unique: bool = ...,
) -> NDArray[_SCTNoCast]: ...
@overload
def setxor1d(
ar1: ArrayLike,
ar2: ArrayLike,
assume_unique: bool = ...,
) -> NDArray[Any]: ...
def in1d(
ar1: ArrayLike,
ar2: ArrayLike,
assume_unique: bool = ...,
invert: bool = ...,
) -> NDArray[bool_]: ...
def isin(
element: ArrayLike,
test_elements: ArrayLike,
assume_unique: bool = ...,
invert: bool = ...,
) -> NDArray[bool_]: ...
@overload
def union1d(
ar1: _ArrayLike[_SCTNoCast],
ar2: _ArrayLike[_SCTNoCast],
) -> NDArray[_SCTNoCast]: ...
@overload
def union1d(
ar1: ArrayLike,
ar2: ArrayLike,
) -> NDArray[Any]: ...
@overload
def setdiff1d(
ar1: _ArrayLike[_SCTNoCast],
ar2: _ArrayLike[_SCTNoCast],
assume_unique: bool = ...,
) -> NDArray[_SCTNoCast]: ...
@overload
def setdiff1d(
ar1: ArrayLike,
ar2: ArrayLike,
assume_unique: bool = ...,
) -> NDArray[Any]: ...