A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/numpy/lib/arraypad.pyi

85 lines
1.7 KiB

from typing import (
Literal as L,
Any,
overload,
TypeVar,
Protocol,
)
from numpy import generic
from numpy._typing import (
ArrayLike,
NDArray,
_ArrayLikeInt,
_ArrayLike,
)
_SCT = TypeVar("_SCT", bound=generic)
class _ModeFunc(Protocol):
def __call__(
self,
vector: NDArray[Any],
iaxis_pad_width: tuple[int, int],
iaxis: int,
kwargs: dict[str, Any],
/,
) -> None: ...
_ModeKind = L[
"constant",
"edge",
"linear_ramp",
"maximum",
"mean",
"median",
"minimum",
"reflect",
"symmetric",
"wrap",
"empty",
]
__all__: list[str]
# TODO: In practice each keyword argument is exclusive to one or more
# specific modes. Consider adding more overloads to express this in the future.
# Expand `**kwargs` into explicit keyword-only arguments
@overload
def pad(
array: _ArrayLike[_SCT],
pad_width: _ArrayLikeInt,
mode: _ModeKind = ...,
*,
stat_length: None | _ArrayLikeInt = ...,
constant_values: ArrayLike = ...,
end_values: ArrayLike = ...,
reflect_type: L["odd", "even"] = ...,
) -> NDArray[_SCT]: ...
@overload
def pad(
array: ArrayLike,
pad_width: _ArrayLikeInt,
mode: _ModeKind = ...,
*,
stat_length: None | _ArrayLikeInt = ...,
constant_values: ArrayLike = ...,
end_values: ArrayLike = ...,
reflect_type: L["odd", "even"] = ...,
) -> NDArray[Any]: ...
@overload
def pad(
array: _ArrayLike[_SCT],
pad_width: _ArrayLikeInt,
mode: _ModeFunc,
**kwargs: Any,
) -> NDArray[_SCT]: ...
@overload
def pad(
array: ArrayLike,
pad_width: _ArrayLikeInt,
mode: _ModeFunc,
**kwargs: Any,
) -> NDArray[Any]: ...