A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/numpy/core/numeric.pyi

623 lines
13 KiB

from collections.abc import Callable, Sequence
from typing import (
Any,
overload,
TypeVar,
Literal,
SupportsAbs,
SupportsIndex,
NoReturn,
)
from typing_extensions import TypeGuard
from numpy import (
ComplexWarning as ComplexWarning,
generic,
unsignedinteger,
signedinteger,
floating,
complexfloating,
bool_,
int_,
intp,
float64,
timedelta64,
object_,
_OrderKACF,
_OrderCF,
)
from numpy._typing import (
ArrayLike,
NDArray,
DTypeLike,
_ShapeLike,
_DTypeLike,
_ArrayLike,
_SupportsArrayFunc,
_ScalarLike_co,
_ArrayLikeBool_co,
_ArrayLikeUInt_co,
_ArrayLikeInt_co,
_ArrayLikeFloat_co,
_ArrayLikeComplex_co,
_ArrayLikeTD64_co,
_ArrayLikeObject_co,
)
_T = TypeVar("_T")
_SCT = TypeVar("_SCT", bound=generic)
_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
_CorrelateMode = Literal["valid", "same", "full"]
__all__: list[str]
@overload
def zeros_like(
a: _ArrayType,
dtype: None = ...,
order: _OrderKACF = ...,
subok: Literal[True] = ...,
shape: None = ...,
) -> _ArrayType: ...
@overload
def zeros_like(
a: _ArrayLike[_SCT],
dtype: None = ...,
order: _OrderKACF = ...,
subok: bool = ...,
shape: None | _ShapeLike = ...,
) -> NDArray[_SCT]: ...
@overload
def zeros_like(
a: object,
dtype: None = ...,
order: _OrderKACF = ...,
subok: bool = ...,
shape: None | _ShapeLike= ...,
) -> NDArray[Any]: ...
@overload
def zeros_like(
a: Any,
dtype: _DTypeLike[_SCT],
order: _OrderKACF = ...,
subok: bool = ...,
shape: None | _ShapeLike= ...,
) -> NDArray[_SCT]: ...
@overload
def zeros_like(
a: Any,
dtype: DTypeLike,
order: _OrderKACF = ...,
subok: bool = ...,
shape: None | _ShapeLike= ...,
) -> NDArray[Any]: ...
@overload
def ones(
shape: _ShapeLike,
dtype: None = ...,
order: _OrderCF = ...,
*,
like: _SupportsArrayFunc = ...,
) -> NDArray[float64]: ...
@overload
def ones(
shape: _ShapeLike,
dtype: _DTypeLike[_SCT],
order: _OrderCF = ...,
*,
like: _SupportsArrayFunc = ...,
) -> NDArray[_SCT]: ...
@overload
def ones(
shape: _ShapeLike,
dtype: DTypeLike,
order: _OrderCF = ...,
*,
like: _SupportsArrayFunc = ...,
) -> NDArray[Any]: ...
@overload
def ones_like(
a: _ArrayType,
dtype: None = ...,
order: _OrderKACF = ...,
subok: Literal[True] = ...,
shape: None = ...,
) -> _ArrayType: ...
@overload
def ones_like(
a: _ArrayLike[_SCT],
dtype: None = ...,
order: _OrderKACF = ...,
subok: bool = ...,
shape: None | _ShapeLike = ...,
) -> NDArray[_SCT]: ...
@overload
def ones_like(
a: object,
dtype: None = ...,
order: _OrderKACF = ...,
subok: bool = ...,
shape: None | _ShapeLike= ...,
) -> NDArray[Any]: ...
@overload
def ones_like(
a: Any,
dtype: _DTypeLike[_SCT],
order: _OrderKACF = ...,
subok: bool = ...,
shape: None | _ShapeLike= ...,
) -> NDArray[_SCT]: ...
@overload
def ones_like(
a: Any,
dtype: DTypeLike,
order: _OrderKACF = ...,
subok: bool = ...,
shape: None | _ShapeLike= ...,
) -> NDArray[Any]: ...
@overload
def full(
shape: _ShapeLike,
fill_value: Any,
dtype: None = ...,
order: _OrderCF = ...,
*,
like: _SupportsArrayFunc = ...,
) -> NDArray[Any]: ...
@overload
def full(
shape: _ShapeLike,
fill_value: Any,
dtype: _DTypeLike[_SCT],
order: _OrderCF = ...,
*,
like: _SupportsArrayFunc = ...,
) -> NDArray[_SCT]: ...
@overload
def full(
shape: _ShapeLike,
fill_value: Any,
dtype: DTypeLike,
order: _OrderCF = ...,
*,
like: _SupportsArrayFunc = ...,
) -> NDArray[Any]: ...
@overload
def full_like(
a: _ArrayType,
fill_value: Any,
dtype: None = ...,
order: _OrderKACF = ...,
subok: Literal[True] = ...,
shape: None = ...,
) -> _ArrayType: ...
@overload
def full_like(
a: _ArrayLike[_SCT],
fill_value: Any,
dtype: None = ...,
order: _OrderKACF = ...,
subok: bool = ...,
shape: None | _ShapeLike = ...,
) -> NDArray[_SCT]: ...
@overload
def full_like(
a: object,
fill_value: Any,
dtype: None = ...,
order: _OrderKACF = ...,
subok: bool = ...,
shape: None | _ShapeLike= ...,
) -> NDArray[Any]: ...
@overload
def full_like(
a: Any,
fill_value: Any,
dtype: _DTypeLike[_SCT],
order: _OrderKACF = ...,
subok: bool = ...,
shape: None | _ShapeLike= ...,
) -> NDArray[_SCT]: ...
@overload
def full_like(
a: Any,
fill_value: Any,
dtype: DTypeLike,
order: _OrderKACF = ...,
subok: bool = ...,
shape: None | _ShapeLike= ...,
) -> NDArray[Any]: ...
@overload
def count_nonzero(
a: ArrayLike,
axis: None = ...,
*,
keepdims: Literal[False] = ...,
) -> int: ...
@overload
def count_nonzero(
a: ArrayLike,
axis: _ShapeLike = ...,
*,
keepdims: bool = ...,
) -> Any: ... # TODO: np.intp or ndarray[np.intp]
def isfortran(a: NDArray[Any] | generic) -> bool: ...
def argwhere(a: ArrayLike) -> NDArray[intp]: ...
def flatnonzero(a: ArrayLike) -> NDArray[intp]: ...
@overload
def correlate(
a: _ArrayLikeBool_co,
v: _ArrayLikeBool_co,
mode: _CorrelateMode = ...,
) -> NDArray[bool_]: ...
@overload
def correlate(
a: _ArrayLikeUInt_co,
v: _ArrayLikeUInt_co,
mode: _CorrelateMode = ...,
) -> NDArray[unsignedinteger[Any]]: ...
@overload
def correlate(
a: _ArrayLikeInt_co,
v: _ArrayLikeInt_co,
mode: _CorrelateMode = ...,
) -> NDArray[signedinteger[Any]]: ...
@overload
def correlate(
a: _ArrayLikeFloat_co,
v: _ArrayLikeFloat_co,
mode: _CorrelateMode = ...,
) -> NDArray[floating[Any]]: ...
@overload
def correlate(
a: _ArrayLikeComplex_co,
v: _ArrayLikeComplex_co,
mode: _CorrelateMode = ...,
) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def correlate(
a: _ArrayLikeTD64_co,
v: _ArrayLikeTD64_co,
mode: _CorrelateMode = ...,
) -> NDArray[timedelta64]: ...
@overload
def correlate(
a: _ArrayLikeObject_co,
v: _ArrayLikeObject_co,
mode: _CorrelateMode = ...,
) -> NDArray[object_]: ...
@overload
def convolve(
a: _ArrayLikeBool_co,
v: _ArrayLikeBool_co,
mode: _CorrelateMode = ...,
) -> NDArray[bool_]: ...
@overload
def convolve(
a: _ArrayLikeUInt_co,
v: _ArrayLikeUInt_co,
mode: _CorrelateMode = ...,
) -> NDArray[unsignedinteger[Any]]: ...
@overload
def convolve(
a: _ArrayLikeInt_co,
v: _ArrayLikeInt_co,
mode: _CorrelateMode = ...,
) -> NDArray[signedinteger[Any]]: ...
@overload
def convolve(
a: _ArrayLikeFloat_co,
v: _ArrayLikeFloat_co,
mode: _CorrelateMode = ...,
) -> NDArray[floating[Any]]: ...
@overload
def convolve(
a: _ArrayLikeComplex_co,
v: _ArrayLikeComplex_co,
mode: _CorrelateMode = ...,
) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def convolve(
a: _ArrayLikeTD64_co,
v: _ArrayLikeTD64_co,
mode: _CorrelateMode = ...,
) -> NDArray[timedelta64]: ...
@overload
def convolve(
a: _ArrayLikeObject_co,
v: _ArrayLikeObject_co,
mode: _CorrelateMode = ...,
) -> NDArray[object_]: ...
@overload
def outer(
a: _ArrayLikeBool_co,
b: _ArrayLikeBool_co,
out: None = ...,
) -> NDArray[bool_]: ...
@overload
def outer(
a: _ArrayLikeUInt_co,
b: _ArrayLikeUInt_co,
out: None = ...,
) -> NDArray[unsignedinteger[Any]]: ...
@overload
def outer(
a: _ArrayLikeInt_co,
b: _ArrayLikeInt_co,
out: None = ...,
) -> NDArray[signedinteger[Any]]: ...
@overload
def outer(
a: _ArrayLikeFloat_co,
b: _ArrayLikeFloat_co,
out: None = ...,
) -> NDArray[floating[Any]]: ...
@overload
def outer(
a: _ArrayLikeComplex_co,
b: _ArrayLikeComplex_co,
out: None = ...,
) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def outer(
a: _ArrayLikeTD64_co,
b: _ArrayLikeTD64_co,
out: None = ...,
) -> NDArray[timedelta64]: ...
@overload
def outer(
a: _ArrayLikeObject_co,
b: _ArrayLikeObject_co,
out: None = ...,
) -> NDArray[object_]: ...
@overload
def outer(
a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
b: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
out: _ArrayType,
) -> _ArrayType: ...
@overload
def tensordot(
a: _ArrayLikeBool_co,
b: _ArrayLikeBool_co,
axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
) -> NDArray[bool_]: ...
@overload
def tensordot(
a: _ArrayLikeUInt_co,
b: _ArrayLikeUInt_co,
axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
) -> NDArray[unsignedinteger[Any]]: ...
@overload
def tensordot(
a: _ArrayLikeInt_co,
b: _ArrayLikeInt_co,
axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
) -> NDArray[signedinteger[Any]]: ...
@overload
def tensordot(
a: _ArrayLikeFloat_co,
b: _ArrayLikeFloat_co,
axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
) -> NDArray[floating[Any]]: ...
@overload
def tensordot(
a: _ArrayLikeComplex_co,
b: _ArrayLikeComplex_co,
axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def tensordot(
a: _ArrayLikeTD64_co,
b: _ArrayLikeTD64_co,
axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
) -> NDArray[timedelta64]: ...
@overload
def tensordot(
a: _ArrayLikeObject_co,
b: _ArrayLikeObject_co,
axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
) -> NDArray[object_]: ...
@overload
def roll(
a: _ArrayLike[_SCT],
shift: _ShapeLike,
axis: None | _ShapeLike = ...,
) -> NDArray[_SCT]: ...
@overload
def roll(
a: ArrayLike,
shift: _ShapeLike,
axis: None | _ShapeLike = ...,
) -> NDArray[Any]: ...
def rollaxis(
a: NDArray[_SCT],
axis: int,
start: int = ...,
) -> NDArray[_SCT]: ...
def moveaxis(
a: NDArray[_SCT],
source: _ShapeLike,
destination: _ShapeLike,
) -> NDArray[_SCT]: ...
@overload
def cross(
a: _ArrayLikeBool_co,
b: _ArrayLikeBool_co,
axisa: int = ...,
axisb: int = ...,
axisc: int = ...,
axis: None | int = ...,
) -> NoReturn: ...
@overload
def cross(
a: _ArrayLikeUInt_co,
b: _ArrayLikeUInt_co,
axisa: int = ...,
axisb: int = ...,
axisc: int = ...,
axis: None | int = ...,
) -> NDArray[unsignedinteger[Any]]: ...
@overload
def cross(
a: _ArrayLikeInt_co,
b: _ArrayLikeInt_co,
axisa: int = ...,
axisb: int = ...,
axisc: int = ...,
axis: None | int = ...,
) -> NDArray[signedinteger[Any]]: ...
@overload
def cross(
a: _ArrayLikeFloat_co,
b: _ArrayLikeFloat_co,
axisa: int = ...,
axisb: int = ...,
axisc: int = ...,
axis: None | int = ...,
) -> NDArray[floating[Any]]: ...
@overload
def cross(
a: _ArrayLikeComplex_co,
b: _ArrayLikeComplex_co,
axisa: int = ...,
axisb: int = ...,
axisc: int = ...,
axis: None | int = ...,
) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def cross(
a: _ArrayLikeObject_co,
b: _ArrayLikeObject_co,
axisa: int = ...,
axisb: int = ...,
axisc: int = ...,
axis: None | int = ...,
) -> NDArray[object_]: ...
@overload
def indices(
dimensions: Sequence[int],
dtype: type[int] = ...,
sparse: Literal[False] = ...,
) -> NDArray[int_]: ...
@overload
def indices(
dimensions: Sequence[int],
dtype: type[int] = ...,
sparse: Literal[True] = ...,
) -> tuple[NDArray[int_], ...]: ...
@overload
def indices(
dimensions: Sequence[int],
dtype: _DTypeLike[_SCT],
sparse: Literal[False] = ...,
) -> NDArray[_SCT]: ...
@overload
def indices(
dimensions: Sequence[int],
dtype: _DTypeLike[_SCT],
sparse: Literal[True],
) -> tuple[NDArray[_SCT], ...]: ...
@overload
def indices(
dimensions: Sequence[int],
dtype: DTypeLike,
sparse: Literal[False] = ...,
) -> NDArray[Any]: ...
@overload
def indices(
dimensions: Sequence[int],
dtype: DTypeLike,
sparse: Literal[True],
) -> tuple[NDArray[Any], ...]: ...
def fromfunction(
function: Callable[..., _T],
shape: Sequence[int],
*,
dtype: DTypeLike = ...,
like: _SupportsArrayFunc = ...,
**kwargs: Any,
) -> _T: ...
def isscalar(element: object) -> TypeGuard[
generic | bool | int | float | complex | str | bytes | memoryview
]: ...
def binary_repr(num: int, width: None | int = ...) -> str: ...
def base_repr(
number: SupportsAbs[float],
base: float = ...,
padding: SupportsIndex = ...,
) -> str: ...
@overload
def identity(
n: int,
dtype: None = ...,
*,
like: _SupportsArrayFunc = ...,
) -> NDArray[float64]: ...
@overload
def identity(
n: int,
dtype: _DTypeLike[_SCT],
*,
like: _SupportsArrayFunc = ...,
) -> NDArray[_SCT]: ...
@overload
def identity(
n: int,
dtype: DTypeLike,
*,
like: _SupportsArrayFunc = ...,
) -> NDArray[Any]: ...
def allclose(
a: ArrayLike,
b: ArrayLike,
rtol: float = ...,
atol: float = ...,
equal_nan: bool = ...,
) -> bool: ...
@overload
def isclose(
a: _ScalarLike_co,
b: _ScalarLike_co,
rtol: float = ...,
atol: float = ...,
equal_nan: bool = ...,
) -> bool_: ...
@overload
def isclose(
a: ArrayLike,
b: ArrayLike,
rtol: float = ...,
atol: float = ...,
equal_nan: bool = ...,
) -> NDArray[bool_]: ...
def array_equal(a1: ArrayLike, a2: ArrayLike, equal_nan: bool = ...) -> bool: ...
def array_equiv(a1: ArrayLike, a2: ArrayLike) -> bool: ...