A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/numpy/array_api/_statistical_functions.py

115 lines
3.3 KiB

from __future__ import annotations
from ._dtypes import (
_floating_dtypes,
_numeric_dtypes,
)
from ._array_object import Array
from ._creation_functions import asarray
from ._dtypes import float32, float64
from typing import TYPE_CHECKING, Optional, Tuple, Union
if TYPE_CHECKING:
from ._typing import Dtype
import numpy as np
def max(
x: Array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
keepdims: bool = False,
) -> Array:
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in max")
return Array._new(np.max(x._array, axis=axis, keepdims=keepdims))
def mean(
x: Array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
keepdims: bool = False,
) -> Array:
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in mean")
return Array._new(np.mean(x._array, axis=axis, keepdims=keepdims))
def min(
x: Array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
keepdims: bool = False,
) -> Array:
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in min")
return Array._new(np.min(x._array, axis=axis, keepdims=keepdims))
def prod(
x: Array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
dtype: Optional[Dtype] = None,
keepdims: bool = False,
) -> Array:
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in prod")
# Note: sum() and prod() always upcast float32 to float64 for dtype=None
# We need to do so here before computing the product to avoid overflow
if dtype is None and x.dtype == float32:
dtype = float64
return Array._new(np.prod(x._array, dtype=dtype, axis=axis, keepdims=keepdims))
def std(
x: Array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
correction: Union[int, float] = 0.0,
keepdims: bool = False,
) -> Array:
# Note: the keyword argument correction is different here
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in std")
return Array._new(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims))
def sum(
x: Array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
dtype: Optional[Dtype] = None,
keepdims: bool = False,
) -> Array:
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in sum")
# Note: sum() and prod() always upcast integers to (u)int64 and float32 to
# float64 for dtype=None. `np.sum` does that too for integers, but not for
# float32, so we need to special-case it here
if dtype is None and x.dtype == float32:
dtype = float64
return Array._new(np.sum(x._array, axis=axis, dtype=dtype, keepdims=keepdims))
def var(
x: Array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
correction: Union[int, float] = 0.0,
keepdims: bool = False,
) -> Array:
# Note: the keyword argument correction is different here
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in var")
return Array._new(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims))