A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/numpy/array_api/_creation_functions.py

351 lines
9.8 KiB

from __future__ import annotations
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
if TYPE_CHECKING:
from ._typing import (
Array,
Device,
Dtype,
NestedSequence,
SupportsBufferProtocol,
)
from collections.abc import Sequence
from ._dtypes import _all_dtypes
import numpy as np
def _check_valid_dtype(dtype):
# Note: Only spelling dtypes as the dtype objects is supported.
# We use this instead of "dtype in _all_dtypes" because the dtype objects
# define equality with the sorts of things we want to disallow.
for d in (None,) + _all_dtypes:
if dtype is d:
return
raise ValueError("dtype must be one of the supported dtypes")
def asarray(
obj: Union[
Array,
bool,
int,
float,
NestedSequence[bool | int | float],
SupportsBufferProtocol,
],
/,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
copy: Optional[Union[bool, np._CopyMode]] = None,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.asarray <numpy.asarray>`.
See its docstring for more information.
"""
# _array_object imports in this file are inside the functions to avoid
# circular imports
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
if copy in (False, np._CopyMode.IF_NEEDED):
# Note: copy=False is not yet implemented in np.asarray
raise NotImplementedError("copy=False is not yet implemented")
if isinstance(obj, Array):
if dtype is not None and obj.dtype != dtype:
copy = True
if copy in (True, np._CopyMode.ALWAYS):
return Array._new(np.array(obj._array, copy=True, dtype=dtype))
return obj
if dtype is None and isinstance(obj, int) and (obj > 2 ** 64 or obj < -(2 ** 63)):
# Give a better error message in this case. NumPy would convert this
# to an object array. TODO: This won't handle large integers in lists.
raise OverflowError("Integer out of bounds for array dtypes")
res = np.asarray(obj, dtype=dtype)
return Array._new(res)
def arange(
start: Union[int, float],
/,
stop: Optional[Union[int, float]] = None,
step: Union[int, float] = 1,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.arange <numpy.arange>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
return Array._new(np.arange(start, stop=stop, step=step, dtype=dtype))
def empty(
shape: Union[int, Tuple[int, ...]],
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.empty <numpy.empty>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
return Array._new(np.empty(shape, dtype=dtype))
def empty_like(
x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.empty_like <numpy.empty_like>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
return Array._new(np.empty_like(x._array, dtype=dtype))
def eye(
n_rows: int,
n_cols: Optional[int] = None,
/,
*,
k: int = 0,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.eye <numpy.eye>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
return Array._new(np.eye(n_rows, M=n_cols, k=k, dtype=dtype))
def from_dlpack(x: object, /) -> Array:
from ._array_object import Array
return Array._new(np.from_dlpack(x))
def full(
shape: Union[int, Tuple[int, ...]],
fill_value: Union[int, float],
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.full <numpy.full>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
if isinstance(fill_value, Array) and fill_value.ndim == 0:
fill_value = fill_value._array
res = np.full(shape, fill_value, dtype=dtype)
if res.dtype not in _all_dtypes:
# This will happen if the fill value is not something that NumPy
# coerces to one of the acceptable dtypes.
raise TypeError("Invalid input to full")
return Array._new(res)
def full_like(
x: Array,
/,
fill_value: Union[int, float],
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.full_like <numpy.full_like>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
res = np.full_like(x._array, fill_value, dtype=dtype)
if res.dtype not in _all_dtypes:
# This will happen if the fill value is not something that NumPy
# coerces to one of the acceptable dtypes.
raise TypeError("Invalid input to full_like")
return Array._new(res)
def linspace(
start: Union[int, float],
stop: Union[int, float],
/,
num: int,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
endpoint: bool = True,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.linspace <numpy.linspace>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
return Array._new(np.linspace(start, stop, num, dtype=dtype, endpoint=endpoint))
def meshgrid(*arrays: Array, indexing: str = "xy") -> List[Array]:
"""
Array API compatible wrapper for :py:func:`np.meshgrid <numpy.meshgrid>`.
See its docstring for more information.
"""
from ._array_object import Array
# Note: unlike np.meshgrid, only inputs with all the same dtype are
# allowed
if len({a.dtype for a in arrays}) > 1:
raise ValueError("meshgrid inputs must all have the same dtype")
return [
Array._new(array)
for array in np.meshgrid(*[a._array for a in arrays], indexing=indexing)
]
def ones(
shape: Union[int, Tuple[int, ...]],
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.ones <numpy.ones>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
return Array._new(np.ones(shape, dtype=dtype))
def ones_like(
x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.ones_like <numpy.ones_like>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
return Array._new(np.ones_like(x._array, dtype=dtype))
def tril(x: Array, /, *, k: int = 0) -> Array:
"""
Array API compatible wrapper for :py:func:`np.tril <numpy.tril>`.
See its docstring for more information.
"""
from ._array_object import Array
if x.ndim < 2:
# Note: Unlike np.tril, x must be at least 2-D
raise ValueError("x must be at least 2-dimensional for tril")
return Array._new(np.tril(x._array, k=k))
def triu(x: Array, /, *, k: int = 0) -> Array:
"""
Array API compatible wrapper for :py:func:`np.triu <numpy.triu>`.
See its docstring for more information.
"""
from ._array_object import Array
if x.ndim < 2:
# Note: Unlike np.triu, x must be at least 2-D
raise ValueError("x must be at least 2-dimensional for triu")
return Array._new(np.triu(x._array, k=k))
def zeros(
shape: Union[int, Tuple[int, ...]],
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.zeros <numpy.zeros>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
return Array._new(np.zeros(shape, dtype=dtype))
def zeros_like(
x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.zeros_like <numpy.zeros_like>`.
See its docstring for more information.
"""
from ._array_object import Array
_check_valid_dtype(dtype)
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device {device!r}")
return Array._new(np.zeros_like(x._array, dtype=dtype))