A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/io/pytables/test_timezones.py

370 lines
11 KiB

from datetime import (
date,
timedelta,
)
import numpy as np
import pytest
from pandas._libs.tslibs.timezones import maybe_get_tz
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
Series,
Timestamp,
date_range,
)
import pandas._testing as tm
from pandas.tests.io.pytables.common import (
_maybe_remove,
ensure_clean_path,
ensure_clean_store,
)
def _compare_with_tz(a, b):
tm.assert_frame_equal(a, b)
# compare the zones on each element
for c in a.columns:
for i in a.index:
a_e = a.loc[i, c]
b_e = b.loc[i, c]
if not (a_e == b_e and a_e.tz == b_e.tz):
raise AssertionError(f"invalid tz comparison [{a_e}] [{b_e}]")
# use maybe_get_tz instead of dateutil.tz.gettz to handle the windows
# filename issues.
gettz_dateutil = lambda x: maybe_get_tz("dateutil/" + x)
gettz_pytz = lambda x: x
@pytest.mark.parametrize("gettz", [gettz_dateutil, gettz_pytz])
def test_append_with_timezones(setup_path, gettz):
# as columns
# Single-tzinfo, no DST transition
df_est = DataFrame(
{
"A": [
Timestamp("20130102 2:00:00", tz=gettz("US/Eastern"))
+ timedelta(hours=1) * i
for i in range(5)
]
}
)
# frame with all columns having same tzinfo, but different sides
# of DST transition
df_crosses_dst = DataFrame(
{
"A": Timestamp("20130102", tz=gettz("US/Eastern")),
"B": Timestamp("20130603", tz=gettz("US/Eastern")),
},
index=range(5),
)
df_mixed_tz = DataFrame(
{
"A": Timestamp("20130102", tz=gettz("US/Eastern")),
"B": Timestamp("20130102", tz=gettz("EET")),
},
index=range(5),
)
df_different_tz = DataFrame(
{
"A": Timestamp("20130102", tz=gettz("US/Eastern")),
"B": Timestamp("20130102", tz=gettz("CET")),
},
index=range(5),
)
with ensure_clean_store(setup_path) as store:
_maybe_remove(store, "df_tz")
store.append("df_tz", df_est, data_columns=["A"])
result = store["df_tz"]
_compare_with_tz(result, df_est)
tm.assert_frame_equal(result, df_est)
# select with tz aware
expected = df_est[df_est.A >= df_est.A[3]]
result = store.select("df_tz", where="A>=df_est.A[3]")
_compare_with_tz(result, expected)
# ensure we include dates in DST and STD time here.
_maybe_remove(store, "df_tz")
store.append("df_tz", df_crosses_dst)
result = store["df_tz"]
_compare_with_tz(result, df_crosses_dst)
tm.assert_frame_equal(result, df_crosses_dst)
msg = (
r"invalid info for \[values_block_1\] for \[tz\], "
r"existing_value \[(dateutil/.*)?US/Eastern\] "
r"conflicts with new value \[(dateutil/.*)?EET\]"
)
with pytest.raises(ValueError, match=msg):
store.append("df_tz", df_mixed_tz)
# this is ok
_maybe_remove(store, "df_tz")
store.append("df_tz", df_mixed_tz, data_columns=["A", "B"])
result = store["df_tz"]
_compare_with_tz(result, df_mixed_tz)
tm.assert_frame_equal(result, df_mixed_tz)
# can't append with diff timezone
msg = (
r"invalid info for \[B\] for \[tz\], "
r"existing_value \[(dateutil/.*)?EET\] "
r"conflicts with new value \[(dateutil/.*)?CET\]"
)
with pytest.raises(ValueError, match=msg):
store.append("df_tz", df_different_tz)
@pytest.mark.parametrize("gettz", [gettz_dateutil, gettz_pytz])
def test_append_with_timezones_as_index(setup_path, gettz):
# GH#4098 example
dti = date_range("2000-1-1", periods=3, freq="H", tz=gettz("US/Eastern"))
dti = dti._with_freq(None) # freq doesn't round-trip
df = DataFrame({"A": Series(range(3), index=dti)})
with ensure_clean_store(setup_path) as store:
_maybe_remove(store, "df")
store.put("df", df)
result = store.select("df")
tm.assert_frame_equal(result, df)
_maybe_remove(store, "df")
store.append("df", df)
result = store.select("df")
tm.assert_frame_equal(result, df)
def test_roundtrip_tz_aware_index(setup_path):
# GH 17618
time = Timestamp("2000-01-01 01:00:00", tz="US/Eastern")
df = DataFrame(data=[0], index=[time])
with ensure_clean_store(setup_path) as store:
store.put("frame", df, format="fixed")
recons = store["frame"]
tm.assert_frame_equal(recons, df)
assert recons.index[0].value == 946706400000000000
def test_store_index_name_with_tz(setup_path):
# GH 13884
df = DataFrame({"A": [1, 2]})
df.index = DatetimeIndex([1234567890123456787, 1234567890123456788])
df.index = df.index.tz_localize("UTC")
df.index.name = "foo"
with ensure_clean_store(setup_path) as store:
store.put("frame", df, format="table")
recons = store["frame"]
tm.assert_frame_equal(recons, df)
def test_tseries_select_index_column(setup_path):
# GH7777
# selecting a UTC datetimeindex column did
# not preserve UTC tzinfo set before storing
# check that no tz still works
rng = date_range("1/1/2000", "1/30/2000")
frame = DataFrame(np.random.randn(len(rng), 4), index=rng)
with ensure_clean_store(setup_path) as store:
store.append("frame", frame)
result = store.select_column("frame", "index")
assert rng.tz == DatetimeIndex(result.values).tz
# check utc
rng = date_range("1/1/2000", "1/30/2000", tz="UTC")
frame = DataFrame(np.random.randn(len(rng), 4), index=rng)
with ensure_clean_store(setup_path) as store:
store.append("frame", frame)
result = store.select_column("frame", "index")
assert rng.tz == result.dt.tz
# double check non-utc
rng = date_range("1/1/2000", "1/30/2000", tz="US/Eastern")
frame = DataFrame(np.random.randn(len(rng), 4), index=rng)
with ensure_clean_store(setup_path) as store:
store.append("frame", frame)
result = store.select_column("frame", "index")
assert rng.tz == result.dt.tz
def test_timezones_fixed_format_frame_non_empty(setup_path):
with ensure_clean_store(setup_path) as store:
# index
rng = date_range("1/1/2000", "1/30/2000", tz="US/Eastern")
rng = rng._with_freq(None) # freq doesn't round-trip
df = DataFrame(np.random.randn(len(rng), 4), index=rng)
store["df"] = df
result = store["df"]
tm.assert_frame_equal(result, df)
# as data
# GH11411
_maybe_remove(store, "df")
df = DataFrame(
{
"A": rng,
"B": rng.tz_convert("UTC").tz_localize(None),
"C": rng.tz_convert("CET"),
"D": range(len(rng)),
},
index=rng,
)
store["df"] = df
result = store["df"]
tm.assert_frame_equal(result, df)
def test_timezones_fixed_format_empty(setup_path, tz_aware_fixture, frame_or_series):
# GH 20594
dtype = pd.DatetimeTZDtype(tz=tz_aware_fixture)
obj = Series(dtype=dtype, name="A")
if frame_or_series is DataFrame:
obj = obj.to_frame()
with ensure_clean_store(setup_path) as store:
store["obj"] = obj
result = store["obj"]
tm.assert_equal(result, obj)
def test_timezones_fixed_format_series_nonempty(setup_path, tz_aware_fixture):
# GH 20594
dtype = pd.DatetimeTZDtype(tz=tz_aware_fixture)
with ensure_clean_store(setup_path) as store:
s = Series([0], dtype=dtype)
store["s"] = s
result = store["s"]
tm.assert_series_equal(result, s)
def test_fixed_offset_tz(setup_path):
rng = date_range("1/1/2000 00:00:00-07:00", "1/30/2000 00:00:00-07:00")
frame = DataFrame(np.random.randn(len(rng), 4), index=rng)
with ensure_clean_store(setup_path) as store:
store["frame"] = frame
recons = store["frame"]
tm.assert_index_equal(recons.index, rng)
assert rng.tz == recons.index.tz
@td.skip_if_windows
def test_store_timezone(setup_path):
# GH2852
# issue storing datetime.date with a timezone as it resets when read
# back in a new timezone
# original method
with ensure_clean_store(setup_path) as store:
today = date(2013, 9, 10)
df = DataFrame([1, 2, 3], index=[today, today, today])
store["obj1"] = df
result = store["obj1"]
tm.assert_frame_equal(result, df)
# with tz setting
with ensure_clean_store(setup_path) as store:
with tm.set_timezone("EST5EDT"):
today = date(2013, 9, 10)
df = DataFrame([1, 2, 3], index=[today, today, today])
store["obj1"] = df
with tm.set_timezone("CST6CDT"):
result = store["obj1"]
tm.assert_frame_equal(result, df)
def test_legacy_datetimetz_object(datapath, setup_path):
# legacy from < 0.17.0
# 8260
expected = DataFrame(
{
"A": Timestamp("20130102", tz="US/Eastern"),
"B": Timestamp("20130603", tz="CET"),
},
index=range(5),
)
with ensure_clean_store(
datapath("io", "data", "legacy_hdf", "datetimetz_object.h5"), mode="r"
) as store:
result = store["df"]
tm.assert_frame_equal(result, expected)
def test_dst_transitions(setup_path):
# make sure we are not failing on transitions
with ensure_clean_store(setup_path) as store:
times = date_range(
"2013-10-26 23:00",
"2013-10-27 01:00",
tz="Europe/London",
freq="H",
ambiguous="infer",
)
times = times._with_freq(None) # freq doesn't round-trip
for i in [times, times + pd.Timedelta("10min")]:
_maybe_remove(store, "df")
df = DataFrame({"A": range(len(i)), "B": i}, index=i)
store.append("df", df)
result = store.select("df")
tm.assert_frame_equal(result, df)
def test_read_with_where_tz_aware_index(setup_path):
# GH 11926
periods = 10
dts = date_range("20151201", periods=periods, freq="D", tz="UTC")
mi = pd.MultiIndex.from_arrays([dts, range(periods)], names=["DATE", "NO"])
expected = DataFrame({"MYCOL": 0}, index=mi)
key = "mykey"
with ensure_clean_path(setup_path) as path:
with pd.HDFStore(path) as store:
store.append(key, expected, format="table", append=True)
result = pd.read_hdf(path, key, where="DATE > 20151130")
tm.assert_frame_equal(result, expected)
def test_py2_created_with_datetimez(datapath, setup_path):
# The test HDF5 file was created in Python 2, but could not be read in
# Python 3.
#
# GH26443
index = [Timestamp("2019-01-01T18:00").tz_localize("America/New_York")]
expected = DataFrame({"data": 123}, index=index)
with ensure_clean_store(
datapath("io", "data", "legacy_hdf", "gh26443.h5"), mode="r"
) as store:
result = store["key"]
tm.assert_frame_equal(result, expected)