A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/io/pytables/test_keys.py

80 lines
2.3 KiB

import pytest
from pandas import (
DataFrame,
HDFStore,
_testing as tm,
)
from pandas.tests.io.pytables.common import (
ensure_clean_path,
ensure_clean_store,
tables,
)
pytestmark = pytest.mark.single_cpu
def test_keys(setup_path):
with ensure_clean_store(setup_path) as store:
store["a"] = tm.makeTimeSeries()
store["b"] = tm.makeStringSeries()
store["c"] = tm.makeDataFrame()
assert len(store) == 3
expected = {"/a", "/b", "/c"}
assert set(store.keys()) == expected
assert set(store) == expected
def test_non_pandas_keys(setup_path):
class Table1(tables.IsDescription):
value1 = tables.Float32Col()
class Table2(tables.IsDescription):
value2 = tables.Float32Col()
class Table3(tables.IsDescription):
value3 = tables.Float32Col()
with ensure_clean_path(setup_path) as path:
with tables.open_file(path, mode="w") as h5file:
group = h5file.create_group("/", "group")
h5file.create_table(group, "table1", Table1, "Table 1")
h5file.create_table(group, "table2", Table2, "Table 2")
h5file.create_table(group, "table3", Table3, "Table 3")
with HDFStore(path) as store:
assert len(store.keys(include="native")) == 3
expected = {"/group/table1", "/group/table2", "/group/table3"}
assert set(store.keys(include="native")) == expected
assert set(store.keys(include="pandas")) == set()
for name in expected:
df = store.get(name)
assert len(df.columns) == 1
def test_keys_illegal_include_keyword_value(setup_path):
with ensure_clean_store(setup_path) as store:
with pytest.raises(
ValueError,
match="`include` should be either 'pandas' or 'native' but is 'illegal'",
):
store.keys(include="illegal")
def test_keys_ignore_hdf_softlink(setup_path):
# GH 20523
# Puts a softlink into HDF file and rereads
with ensure_clean_store(setup_path) as store:
df = DataFrame({"A": range(5), "B": range(5)})
store.put("df", df)
assert store.keys() == ["/df"]
store._handle.create_soft_link(store._handle.root, "symlink", "df")
# Should ignore the softlink
assert store.keys() == ["/df"]