A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/indexing/multiindex/test_slice.py

769 lines
25 KiB

import numpy as np
import pytest
from pandas.errors import UnsortedIndexError
import pandas as pd
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
Timestamp,
)
import pandas._testing as tm
from pandas.tests.indexing.common import _mklbl
class TestMultiIndexSlicers:
def test_per_axis_per_level_getitem(self):
# GH6134
# example test case
ix = MultiIndex.from_product(
[_mklbl("A", 5), _mklbl("B", 7), _mklbl("C", 4), _mklbl("D", 2)]
)
df = DataFrame(np.arange(len(ix.to_numpy())), index=ix)
result = df.loc[(slice("A1", "A3"), slice(None), ["C1", "C3"]), :]
expected = df.loc[
[
(
a,
b,
c,
d,
)
for a, b, c, d in df.index.values
if (a == "A1" or a == "A2" or a == "A3") and (c == "C1" or c == "C3")
]
]
tm.assert_frame_equal(result, expected)
expected = df.loc[
[
(
a,
b,
c,
d,
)
for a, b, c, d in df.index.values
if (a == "A1" or a == "A2" or a == "A3")
and (c == "C1" or c == "C2" or c == "C3")
]
]
result = df.loc[(slice("A1", "A3"), slice(None), slice("C1", "C3")), :]
tm.assert_frame_equal(result, expected)
# test multi-index slicing with per axis and per index controls
index = MultiIndex.from_tuples(
[("A", 1), ("A", 2), ("A", 3), ("B", 1)], names=["one", "two"]
)
columns = MultiIndex.from_tuples(
[("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")],
names=["lvl0", "lvl1"],
)
df = DataFrame(
np.arange(16, dtype="int64").reshape(4, 4), index=index, columns=columns
)
df = df.sort_index(axis=0).sort_index(axis=1)
# identity
result = df.loc[(slice(None), slice(None)), :]
tm.assert_frame_equal(result, df)
result = df.loc[(slice(None), slice(None)), (slice(None), slice(None))]
tm.assert_frame_equal(result, df)
result = df.loc[:, (slice(None), slice(None))]
tm.assert_frame_equal(result, df)
# index
result = df.loc[(slice(None), [1]), :]
expected = df.iloc[[0, 3]]
tm.assert_frame_equal(result, expected)
result = df.loc[(slice(None), 1), :]
expected = df.iloc[[0, 3]]
tm.assert_frame_equal(result, expected)
# columns
result = df.loc[:, (slice(None), ["foo"])]
expected = df.iloc[:, [1, 3]]
tm.assert_frame_equal(result, expected)
# both
result = df.loc[(slice(None), 1), (slice(None), ["foo"])]
expected = df.iloc[[0, 3], [1, 3]]
tm.assert_frame_equal(result, expected)
result = df.loc["A", "a"]
expected = DataFrame(
{"bar": [1, 5, 9], "foo": [0, 4, 8]},
index=Index([1, 2, 3], name="two"),
columns=Index(["bar", "foo"], name="lvl1"),
)
tm.assert_frame_equal(result, expected)
result = df.loc[(slice(None), [1, 2]), :]
expected = df.iloc[[0, 1, 3]]
tm.assert_frame_equal(result, expected)
# multi-level series
s = Series(np.arange(len(ix.to_numpy())), index=ix)
result = s.loc["A1":"A3", :, ["C1", "C3"]]
expected = s.loc[
[
(
a,
b,
c,
d,
)
for a, b, c, d in s.index.values
if (a == "A1" or a == "A2" or a == "A3") and (c == "C1" or c == "C3")
]
]
tm.assert_series_equal(result, expected)
# boolean indexers
result = df.loc[(slice(None), df.loc[:, ("a", "bar")] > 5), :]
expected = df.iloc[[2, 3]]
tm.assert_frame_equal(result, expected)
msg = (
"cannot index with a boolean indexer "
"that is not the same length as the index"
)
with pytest.raises(ValueError, match=msg):
df.loc[(slice(None), np.array([True, False])), :]
with pytest.raises(KeyError, match=r"\[1\] not in index"):
# slice(None) is on the index, [1] is on the columns, but 1 is
# not in the columns, so we raise
# This used to treat [1] as positional GH#16396
df.loc[slice(None), [1]]
# not lexsorted
assert df.index._lexsort_depth == 2
df = df.sort_index(level=1, axis=0)
assert df.index._lexsort_depth == 0
msg = (
"MultiIndex slicing requires the index to be "
r"lexsorted: slicing on levels \[1\], lexsort depth 0"
)
with pytest.raises(UnsortedIndexError, match=msg):
df.loc[(slice(None), slice("bar")), :]
# GH 16734: not sorted, but no real slicing
result = df.loc[(slice(None), df.loc[:, ("a", "bar")] > 5), :]
tm.assert_frame_equal(result, df.iloc[[1, 3], :])
def test_multiindex_slicers_non_unique(self):
# GH 7106
# non-unique mi index support
df = (
DataFrame(
{
"A": ["foo", "foo", "foo", "foo"],
"B": ["a", "a", "a", "a"],
"C": [1, 2, 1, 3],
"D": [1, 2, 3, 4],
}
)
.set_index(["A", "B", "C"])
.sort_index()
)
assert not df.index.is_unique
expected = (
DataFrame({"A": ["foo", "foo"], "B": ["a", "a"], "C": [1, 1], "D": [1, 3]})
.set_index(["A", "B", "C"])
.sort_index()
)
result = df.loc[(slice(None), slice(None), 1), :]
tm.assert_frame_equal(result, expected)
# this is equivalent of an xs expression
result = df.xs(1, level=2, drop_level=False)
tm.assert_frame_equal(result, expected)
df = (
DataFrame(
{
"A": ["foo", "foo", "foo", "foo"],
"B": ["a", "a", "a", "a"],
"C": [1, 2, 1, 2],
"D": [1, 2, 3, 4],
}
)
.set_index(["A", "B", "C"])
.sort_index()
)
assert not df.index.is_unique
expected = (
DataFrame({"A": ["foo", "foo"], "B": ["a", "a"], "C": [1, 1], "D": [1, 3]})
.set_index(["A", "B", "C"])
.sort_index()
)
result = df.loc[(slice(None), slice(None), 1), :]
assert not result.index.is_unique
tm.assert_frame_equal(result, expected)
# GH12896
# numpy-implementation dependent bug
ints = [
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
12,
13,
14,
14,
16,
17,
18,
19,
200000,
200000,
]
n = len(ints)
idx = MultiIndex.from_arrays([["a"] * n, ints])
result = Series([1] * n, index=idx)
result = result.sort_index()
result = result.loc[(slice(None), slice(100000))]
expected = Series([1] * (n - 2), index=idx[:-2]).sort_index()
tm.assert_series_equal(result, expected)
def test_multiindex_slicers_datetimelike(self):
# GH 7429
# buggy/inconsistent behavior when slicing with datetime-like
import datetime
dates = [
datetime.datetime(2012, 1, 1, 12, 12, 12) + datetime.timedelta(days=i)
for i in range(6)
]
freq = [1, 2]
index = MultiIndex.from_product([dates, freq], names=["date", "frequency"])
df = DataFrame(
np.arange(6 * 2 * 4, dtype="int64").reshape(-1, 4),
index=index,
columns=list("ABCD"),
)
# multi-axis slicing
idx = pd.IndexSlice
expected = df.iloc[[0, 2, 4], [0, 1]]
result = df.loc[
(
slice(
Timestamp("2012-01-01 12:12:12"), Timestamp("2012-01-03 12:12:12")
),
slice(1, 1),
),
slice("A", "B"),
]
tm.assert_frame_equal(result, expected)
result = df.loc[
(
idx[
Timestamp("2012-01-01 12:12:12") : Timestamp("2012-01-03 12:12:12")
],
idx[1:1],
),
slice("A", "B"),
]
tm.assert_frame_equal(result, expected)
result = df.loc[
(
slice(
Timestamp("2012-01-01 12:12:12"), Timestamp("2012-01-03 12:12:12")
),
1,
),
slice("A", "B"),
]
tm.assert_frame_equal(result, expected)
# with strings
result = df.loc[
(slice("2012-01-01 12:12:12", "2012-01-03 12:12:12"), slice(1, 1)),
slice("A", "B"),
]
tm.assert_frame_equal(result, expected)
result = df.loc[
(idx["2012-01-01 12:12:12":"2012-01-03 12:12:12"], 1), idx["A", "B"]
]
tm.assert_frame_equal(result, expected)
def test_multiindex_slicers_edges(self):
# GH 8132
# various edge cases
df = DataFrame(
{
"A": ["A0"] * 5 + ["A1"] * 5 + ["A2"] * 5,
"B": ["B0", "B0", "B1", "B1", "B2"] * 3,
"DATE": [
"2013-06-11",
"2013-07-02",
"2013-07-09",
"2013-07-30",
"2013-08-06",
"2013-06-11",
"2013-07-02",
"2013-07-09",
"2013-07-30",
"2013-08-06",
"2013-09-03",
"2013-10-01",
"2013-07-09",
"2013-08-06",
"2013-09-03",
],
"VALUES": [22, 35, 14, 9, 4, 40, 18, 4, 2, 5, 1, 2, 3, 4, 2],
}
)
df["DATE"] = pd.to_datetime(df["DATE"])
df1 = df.set_index(["A", "B", "DATE"])
df1 = df1.sort_index()
# A1 - Get all values under "A0" and "A1"
result = df1.loc[(slice("A1")), :]
expected = df1.iloc[0:10]
tm.assert_frame_equal(result, expected)
# A2 - Get all values from the start to "A2"
result = df1.loc[(slice("A2")), :]
expected = df1
tm.assert_frame_equal(result, expected)
# A3 - Get all values under "B1" or "B2"
result = df1.loc[(slice(None), slice("B1", "B2")), :]
expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13, 14]]
tm.assert_frame_equal(result, expected)
# A4 - Get all values between 2013-07-02 and 2013-07-09
result = df1.loc[(slice(None), slice(None), slice("20130702", "20130709")), :]
expected = df1.iloc[[1, 2, 6, 7, 12]]
tm.assert_frame_equal(result, expected)
# B1 - Get all values in B0 that are also under A0, A1 and A2
result = df1.loc[(slice("A2"), slice("B0")), :]
expected = df1.iloc[[0, 1, 5, 6, 10, 11]]
tm.assert_frame_equal(result, expected)
# B2 - Get all values in B0, B1 and B2 (similar to what #2 is doing for
# the As)
result = df1.loc[(slice(None), slice("B2")), :]
expected = df1
tm.assert_frame_equal(result, expected)
# B3 - Get all values from B1 to B2 and up to 2013-08-06
result = df1.loc[(slice(None), slice("B1", "B2"), slice("2013-08-06")), :]
expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13]]
tm.assert_frame_equal(result, expected)
# B4 - Same as A4 but the start of the date slice is not a key.
# shows indexing on a partial selection slice
result = df1.loc[(slice(None), slice(None), slice("20130701", "20130709")), :]
expected = df1.iloc[[1, 2, 6, 7, 12]]
tm.assert_frame_equal(result, expected)
def test_per_axis_per_level_doc_examples(self):
# test index maker
idx = pd.IndexSlice
# from indexing.rst / advanced
index = MultiIndex.from_product(
[_mklbl("A", 4), _mklbl("B", 2), _mklbl("C", 4), _mklbl("D", 2)]
)
columns = MultiIndex.from_tuples(
[("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")],
names=["lvl0", "lvl1"],
)
df = DataFrame(
np.arange(len(index) * len(columns), dtype="int64").reshape(
(len(index), len(columns))
),
index=index,
columns=columns,
)
result = df.loc[(slice("A1", "A3"), slice(None), ["C1", "C3"]), :]
expected = df.loc[
[
(
a,
b,
c,
d,
)
for a, b, c, d in df.index.values
if (a == "A1" or a == "A2" or a == "A3") and (c == "C1" or c == "C3")
]
]
tm.assert_frame_equal(result, expected)
result = df.loc[idx["A1":"A3", :, ["C1", "C3"]], :]
tm.assert_frame_equal(result, expected)
result = df.loc[(slice(None), slice(None), ["C1", "C3"]), :]
expected = df.loc[
[
(
a,
b,
c,
d,
)
for a, b, c, d in df.index.values
if (c == "C1" or c == "C3")
]
]
tm.assert_frame_equal(result, expected)
result = df.loc[idx[:, :, ["C1", "C3"]], :]
tm.assert_frame_equal(result, expected)
# not sorted
msg = (
"MultiIndex slicing requires the index to be lexsorted: "
r"slicing on levels \[1\], lexsort depth 1"
)
with pytest.raises(UnsortedIndexError, match=msg):
df.loc["A1", ("a", slice("foo"))]
# GH 16734: not sorted, but no real slicing
tm.assert_frame_equal(
df.loc["A1", (slice(None), "foo")], df.loc["A1"].iloc[:, [0, 2]]
)
df = df.sort_index(axis=1)
# slicing
df.loc["A1", (slice(None), "foo")]
df.loc[(slice(None), slice(None), ["C1", "C3"]), (slice(None), "foo")]
# setitem
df.loc(axis=0)[:, :, ["C1", "C3"]] = -10
def test_loc_axis_arguments(self):
index = MultiIndex.from_product(
[_mklbl("A", 4), _mklbl("B", 2), _mklbl("C", 4), _mklbl("D", 2)]
)
columns = MultiIndex.from_tuples(
[("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")],
names=["lvl0", "lvl1"],
)
df = (
DataFrame(
np.arange(len(index) * len(columns), dtype="int64").reshape(
(len(index), len(columns))
),
index=index,
columns=columns,
)
.sort_index()
.sort_index(axis=1)
)
# axis 0
result = df.loc(axis=0)["A1":"A3", :, ["C1", "C3"]]
expected = df.loc[
[
(
a,
b,
c,
d,
)
for a, b, c, d in df.index.values
if (a == "A1" or a == "A2" or a == "A3") and (c == "C1" or c == "C3")
]
]
tm.assert_frame_equal(result, expected)
result = df.loc(axis="index")[:, :, ["C1", "C3"]]
expected = df.loc[
[
(
a,
b,
c,
d,
)
for a, b, c, d in df.index.values
if (c == "C1" or c == "C3")
]
]
tm.assert_frame_equal(result, expected)
# axis 1
result = df.loc(axis=1)[:, "foo"]
expected = df.loc[:, (slice(None), "foo")]
tm.assert_frame_equal(result, expected)
result = df.loc(axis="columns")[:, "foo"]
expected = df.loc[:, (slice(None), "foo")]
tm.assert_frame_equal(result, expected)
# invalid axis
for i in [-1, 2, "foo"]:
msg = f"No axis named {i} for object type DataFrame"
with pytest.raises(ValueError, match=msg):
df.loc(axis=i)[:, :, ["C1", "C3"]]
def test_loc_axis_single_level_multi_col_indexing_multiindex_col_df(self):
# GH29519
df = DataFrame(
np.arange(27).reshape(3, 9),
columns=MultiIndex.from_product([["a1", "a2", "a3"], ["b1", "b2", "b3"]]),
)
result = df.loc(axis=1)["a1":"a2"]
expected = df.iloc[:, :-3]
tm.assert_frame_equal(result, expected)
def test_loc_axis_single_level_single_col_indexing_multiindex_col_df(self):
# GH29519
df = DataFrame(
np.arange(27).reshape(3, 9),
columns=MultiIndex.from_product([["a1", "a2", "a3"], ["b1", "b2", "b3"]]),
)
result = df.loc(axis=1)["a1"]
expected = df.iloc[:, :3]
expected.columns = ["b1", "b2", "b3"]
tm.assert_frame_equal(result, expected)
def test_loc_ax_single_level_indexer_simple_df(self):
# GH29519
# test single level indexing on single index column data frame
df = DataFrame(np.arange(9).reshape(3, 3), columns=["a", "b", "c"])
result = df.loc(axis=1)["a"]
expected = Series(np.array([0, 3, 6]), name="a")
tm.assert_series_equal(result, expected)
def test_per_axis_per_level_setitem(self):
# test index maker
idx = pd.IndexSlice
# test multi-index slicing with per axis and per index controls
index = MultiIndex.from_tuples(
[("A", 1), ("A", 2), ("A", 3), ("B", 1)], names=["one", "two"]
)
columns = MultiIndex.from_tuples(
[("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")],
names=["lvl0", "lvl1"],
)
df_orig = DataFrame(
np.arange(16, dtype="int64").reshape(4, 4), index=index, columns=columns
)
df_orig = df_orig.sort_index(axis=0).sort_index(axis=1)
# identity
df = df_orig.copy()
df.loc[(slice(None), slice(None)), :] = 100
expected = df_orig.copy()
expected.iloc[:, :] = 100
tm.assert_frame_equal(df, expected)
df = df_orig.copy()
df.loc(axis=0)[:, :] = 100
expected = df_orig.copy()
expected.iloc[:, :] = 100
tm.assert_frame_equal(df, expected)
df = df_orig.copy()
df.loc[(slice(None), slice(None)), (slice(None), slice(None))] = 100
expected = df_orig.copy()
expected.iloc[:, :] = 100
tm.assert_frame_equal(df, expected)
df = df_orig.copy()
df.loc[:, (slice(None), slice(None))] = 100
expected = df_orig.copy()
expected.iloc[:, :] = 100
tm.assert_frame_equal(df, expected)
# index
df = df_orig.copy()
df.loc[(slice(None), [1]), :] = 100
expected = df_orig.copy()
expected.iloc[[0, 3]] = 100
tm.assert_frame_equal(df, expected)
df = df_orig.copy()
df.loc[(slice(None), 1), :] = 100
expected = df_orig.copy()
expected.iloc[[0, 3]] = 100
tm.assert_frame_equal(df, expected)
df = df_orig.copy()
df.loc(axis=0)[:, 1] = 100
expected = df_orig.copy()
expected.iloc[[0, 3]] = 100
tm.assert_frame_equal(df, expected)
# columns
df = df_orig.copy()
df.loc[:, (slice(None), ["foo"])] = 100
expected = df_orig.copy()
expected.iloc[:, [1, 3]] = 100
tm.assert_frame_equal(df, expected)
# both
df = df_orig.copy()
df.loc[(slice(None), 1), (slice(None), ["foo"])] = 100
expected = df_orig.copy()
expected.iloc[[0, 3], [1, 3]] = 100
tm.assert_frame_equal(df, expected)
df = df_orig.copy()
df.loc[idx[:, 1], idx[:, ["foo"]]] = 100
expected = df_orig.copy()
expected.iloc[[0, 3], [1, 3]] = 100
tm.assert_frame_equal(df, expected)
df = df_orig.copy()
df.loc["A", "a"] = 100
expected = df_orig.copy()
expected.iloc[0:3, 0:2] = 100
tm.assert_frame_equal(df, expected)
# setting with a list-like
df = df_orig.copy()
df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array(
[[100, 100], [100, 100]], dtype="int64"
)
expected = df_orig.copy()
expected.iloc[[0, 3], [1, 3]] = 100
tm.assert_frame_equal(df, expected)
# not enough values
df = df_orig.copy()
msg = "setting an array element with a sequence."
with pytest.raises(ValueError, match=msg):
df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array(
[[100], [100, 100]], dtype="int64"
)
msg = "Must have equal len keys and value when setting with an iterable"
with pytest.raises(ValueError, match=msg):
df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array(
[100, 100, 100, 100], dtype="int64"
)
# with an alignable rhs
df = df_orig.copy()
df.loc[(slice(None), 1), (slice(None), ["foo"])] = (
df.loc[(slice(None), 1), (slice(None), ["foo"])] * 5
)
expected = df_orig.copy()
expected.iloc[[0, 3], [1, 3]] = expected.iloc[[0, 3], [1, 3]] * 5
tm.assert_frame_equal(df, expected)
df = df_orig.copy()
df.loc[(slice(None), 1), (slice(None), ["foo"])] *= df.loc[
(slice(None), 1), (slice(None), ["foo"])
]
expected = df_orig.copy()
expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]]
tm.assert_frame_equal(df, expected)
rhs = df_orig.loc[(slice(None), 1), (slice(None), ["foo"])].copy()
rhs.loc[:, ("c", "bah")] = 10
df = df_orig.copy()
df.loc[(slice(None), 1), (slice(None), ["foo"])] *= rhs
expected = df_orig.copy()
expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]]
tm.assert_frame_equal(df, expected)
def test_multiindex_label_slicing_with_negative_step(self):
ser = Series(
np.arange(20), MultiIndex.from_product([list("abcde"), np.arange(4)])
)
SLC = pd.IndexSlice
tm.assert_indexing_slices_equivalent(ser, SLC[::-1], SLC[::-1])
tm.assert_indexing_slices_equivalent(ser, SLC["d"::-1], SLC[15::-1])
tm.assert_indexing_slices_equivalent(ser, SLC[("d",)::-1], SLC[15::-1])
tm.assert_indexing_slices_equivalent(ser, SLC[:"d":-1], SLC[:11:-1])
tm.assert_indexing_slices_equivalent(ser, SLC[:("d",):-1], SLC[:11:-1])
tm.assert_indexing_slices_equivalent(ser, SLC["d":"b":-1], SLC[15:3:-1])
tm.assert_indexing_slices_equivalent(ser, SLC[("d",):"b":-1], SLC[15:3:-1])
tm.assert_indexing_slices_equivalent(ser, SLC["d":("b",):-1], SLC[15:3:-1])
tm.assert_indexing_slices_equivalent(ser, SLC[("d",):("b",):-1], SLC[15:3:-1])
tm.assert_indexing_slices_equivalent(ser, SLC["b":"d":-1], SLC[:0])
tm.assert_indexing_slices_equivalent(ser, SLC[("c", 2)::-1], SLC[10::-1])
tm.assert_indexing_slices_equivalent(ser, SLC[:("c", 2):-1], SLC[:9:-1])
tm.assert_indexing_slices_equivalent(
ser, SLC[("e", 0):("c", 2):-1], SLC[16:9:-1]
)
def test_multiindex_slice_first_level(self):
# GH 12697
freq = ["a", "b", "c", "d"]
idx = MultiIndex.from_product([freq, np.arange(500)])
df = DataFrame(list(range(2000)), index=idx, columns=["Test"])
df_slice = df.loc[pd.IndexSlice[:, 30:70], :]
result = df_slice.loc["a"]
expected = DataFrame(list(range(30, 71)), columns=["Test"], index=range(30, 71))
tm.assert_frame_equal(result, expected)
result = df_slice.loc["d"]
expected = DataFrame(
list(range(1530, 1571)), columns=["Test"], index=range(30, 71)
)
tm.assert_frame_equal(result, expected)
def test_int_series_slicing(self, multiindex_year_month_day_dataframe_random_data):
ymd = multiindex_year_month_day_dataframe_random_data
s = ymd["A"]
result = s[5:]
expected = s.reindex(s.index[5:])
tm.assert_series_equal(result, expected)
exp = ymd["A"].copy()
s[5:] = 0
exp.values[5:] = 0
tm.assert_numpy_array_equal(s.values, exp.values)
result = ymd[5:]
expected = ymd.reindex(s.index[5:])
tm.assert_frame_equal(result, expected)
def test_loc_slice_negative_stepsize(self):
# GH#38071
mi = MultiIndex.from_product([["a", "b"], [0, 1]])
df = DataFrame([[1, 2], [3, 4], [5, 6], [7, 8]], index=mi)
result = df.loc[("a", slice(None, None, -1)), :]
expected = DataFrame(
[[3, 4], [1, 2]], index=MultiIndex.from_tuples([("a", 1), ("a", 0)])
)
tm.assert_frame_equal(result, expected)