A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/indexes/ranges/test_range.py

626 lines
20 KiB

import numpy as np
import pytest
from pandas.core.dtypes.common import ensure_platform_int
import pandas as pd
import pandas._testing as tm
from pandas.core.indexes.api import (
Float64Index,
Index,
Int64Index,
RangeIndex,
)
from pandas.tests.indexes.common import NumericBase
# aliases to make some tests easier to read
RI = RangeIndex
I64 = Int64Index
F64 = Float64Index
OI = Index
class TestRangeIndex(NumericBase):
_index_cls = RangeIndex
@pytest.fixture
def dtype(self):
return np.int64
@pytest.fixture(
params=["uint64", "float64", "category", "datetime64", "object"],
)
def invalid_dtype(self, request):
return request.param
@pytest.fixture
def simple_index(self) -> Index:
return self._index_cls(start=0, stop=20, step=2)
@pytest.fixture(
params=[
RangeIndex(start=0, stop=20, step=2, name="foo"),
RangeIndex(start=18, stop=-1, step=-2, name="bar"),
],
ids=["index_inc", "index_dec"],
)
def index(self, request):
return request.param
def test_constructor_unwraps_index(self, dtype):
result = self._index_cls(1, 3)
expected = np.array([1, 2], dtype=dtype)
tm.assert_numpy_array_equal(result._data, expected)
def test_can_hold_identifiers(self, simple_index):
idx = simple_index
key = idx[0]
assert idx._can_hold_identifiers_and_holds_name(key) is False
def test_too_many_names(self, simple_index):
index = simple_index
with pytest.raises(ValueError, match="^Length"):
index.names = ["roger", "harold"]
@pytest.mark.parametrize(
"index, start, stop, step",
[
(RangeIndex(5), 0, 5, 1),
(RangeIndex(0, 5), 0, 5, 1),
(RangeIndex(5, step=2), 0, 5, 2),
(RangeIndex(1, 5, 2), 1, 5, 2),
],
)
def test_start_stop_step_attrs(self, index, start, stop, step):
# GH 25710
assert index.start == start
assert index.stop == stop
assert index.step == step
@pytest.mark.parametrize("attr_name", ["_start", "_stop", "_step"])
def test_deprecated_start_stop_step_attrs(self, attr_name, simple_index):
# GH 26581
idx = simple_index
with tm.assert_produces_warning(FutureWarning):
getattr(idx, attr_name)
def test_copy(self):
i = RangeIndex(5, name="Foo")
i_copy = i.copy()
assert i_copy is not i
assert i_copy.identical(i)
assert i_copy._range == range(0, 5, 1)
assert i_copy.name == "Foo"
def test_repr(self):
i = RangeIndex(5, name="Foo")
result = repr(i)
expected = "RangeIndex(start=0, stop=5, step=1, name='Foo')"
assert result == expected
result = eval(result)
tm.assert_index_equal(result, i, exact=True)
i = RangeIndex(5, 0, -1)
result = repr(i)
expected = "RangeIndex(start=5, stop=0, step=-1)"
assert result == expected
result = eval(result)
tm.assert_index_equal(result, i, exact=True)
def test_insert(self):
idx = RangeIndex(5, name="Foo")
result = idx[1:4]
# test 0th element
tm.assert_index_equal(idx[0:4], result.insert(0, idx[0]), exact="equiv")
# GH 18295 (test missing)
expected = Float64Index([0, np.nan, 1, 2, 3, 4])
for na in [np.nan, None, pd.NA]:
result = RangeIndex(5).insert(1, na)
tm.assert_index_equal(result, expected)
result = RangeIndex(5).insert(1, pd.NaT)
expected = Index([0, pd.NaT, 1, 2, 3, 4], dtype=object)
tm.assert_index_equal(result, expected)
def test_insert_edges_preserves_rangeindex(self):
idx = Index(range(4, 9, 2))
result = idx.insert(0, 2)
expected = Index(range(2, 9, 2))
tm.assert_index_equal(result, expected, exact=True)
result = idx.insert(3, 10)
expected = Index(range(4, 11, 2))
tm.assert_index_equal(result, expected, exact=True)
def test_insert_middle_preserves_rangeindex(self):
# insert in the middle
idx = Index(range(0, 3, 2))
result = idx.insert(1, 1)
expected = Index(range(3))
tm.assert_index_equal(result, expected, exact=True)
idx = idx * 2
result = idx.insert(1, 2)
expected = expected * 2
tm.assert_index_equal(result, expected, exact=True)
def test_delete(self):
idx = RangeIndex(5, name="Foo")
expected = idx[1:]
result = idx.delete(0)
tm.assert_index_equal(result, expected, exact=True)
assert result.name == expected.name
expected = idx[:-1]
result = idx.delete(-1)
tm.assert_index_equal(result, expected, exact=True)
assert result.name == expected.name
msg = "index 5 is out of bounds for axis 0 with size 5"
with pytest.raises((IndexError, ValueError), match=msg):
# either depending on numpy version
result = idx.delete(len(idx))
def test_delete_preserves_rangeindex(self):
idx = Index(range(2), name="foo")
result = idx.delete([1])
expected = Index(range(1), name="foo")
tm.assert_index_equal(result, expected, exact=True)
result = idx.delete(1)
tm.assert_index_equal(result, expected, exact=True)
def test_delete_preserves_rangeindex_middle(self):
idx = Index(range(3), name="foo")
result = idx.delete(1)
expected = idx[::2]
tm.assert_index_equal(result, expected, exact=True)
result = idx.delete(-2)
tm.assert_index_equal(result, expected, exact=True)
def test_delete_preserves_rangeindex_list_at_end(self):
idx = RangeIndex(0, 6, 1)
loc = [2, 3, 4, 5]
result = idx.delete(loc)
expected = idx[:2]
tm.assert_index_equal(result, expected, exact=True)
result = idx.delete(loc[::-1])
tm.assert_index_equal(result, expected, exact=True)
def test_delete_preserves_rangeindex_list_middle(self):
idx = RangeIndex(0, 6, 1)
loc = [1, 2, 3, 4]
result = idx.delete(loc)
expected = RangeIndex(0, 6, 5)
tm.assert_index_equal(result, expected, exact=True)
result = idx.delete(loc[::-1])
tm.assert_index_equal(result, expected, exact=True)
def test_delete_all_preserves_rangeindex(self):
idx = RangeIndex(0, 6, 1)
loc = [0, 1, 2, 3, 4, 5]
result = idx.delete(loc)
expected = idx[:0]
tm.assert_index_equal(result, expected, exact=True)
result = idx.delete(loc[::-1])
tm.assert_index_equal(result, expected, exact=True)
def test_delete_not_preserving_rangeindex(self):
idx = RangeIndex(0, 6, 1)
loc = [0, 3, 5]
result = idx.delete(loc)
expected = Int64Index([1, 2, 4])
tm.assert_index_equal(result, expected, exact=True)
result = idx.delete(loc[::-1])
tm.assert_index_equal(result, expected, exact=True)
def test_view(self):
i = RangeIndex(0, name="Foo")
i_view = i.view()
assert i_view.name == "Foo"
i_view = i.view("i8")
tm.assert_numpy_array_equal(i.values, i_view)
i_view = i.view(RangeIndex)
tm.assert_index_equal(i, i_view)
def test_dtype(self, simple_index):
index = simple_index
assert index.dtype == np.int64
def test_cache(self):
# GH 26565, GH26617, GH35432
# This test checks whether _cache has been set.
# Calling RangeIndex._cache["_data"] creates an int64 array of the same length
# as the RangeIndex and stores it in _cache.
idx = RangeIndex(0, 100, 10)
assert idx._cache == {}
repr(idx)
assert idx._cache == {}
str(idx)
assert idx._cache == {}
idx.get_loc(20)
assert idx._cache == {}
90 in idx # True
assert idx._cache == {}
91 in idx # False
assert idx._cache == {}
idx.all()
assert idx._cache == {}
idx.any()
assert idx._cache == {}
for _ in idx:
pass
assert idx._cache == {}
idx.format()
assert idx._cache == {}
df = pd.DataFrame({"a": range(10)}, index=idx)
str(df)
assert idx._cache == {}
df.loc[50]
assert idx._cache == {}
with pytest.raises(KeyError, match="51"):
df.loc[51]
assert idx._cache == {}
df.loc[10:50]
assert idx._cache == {}
df.iloc[5:10]
assert idx._cache == {}
# idx._cache should contain a _data entry after call to idx._data
idx._data
assert isinstance(idx._data, np.ndarray)
assert idx._data is idx._data # check cached value is reused
assert len(idx._cache) == 1
expected = np.arange(0, 100, 10, dtype="int64")
tm.assert_numpy_array_equal(idx._cache["_data"], expected)
def test_is_monotonic(self):
index = RangeIndex(0, 20, 2)
assert index.is_monotonic is True
assert index.is_monotonic_increasing is True
assert index.is_monotonic_decreasing is False
assert index._is_strictly_monotonic_increasing is True
assert index._is_strictly_monotonic_decreasing is False
index = RangeIndex(4, 0, -1)
assert index.is_monotonic is False
assert index._is_strictly_monotonic_increasing is False
assert index.is_monotonic_decreasing is True
assert index._is_strictly_monotonic_decreasing is True
index = RangeIndex(1, 2)
assert index.is_monotonic is True
assert index.is_monotonic_increasing is True
assert index.is_monotonic_decreasing is True
assert index._is_strictly_monotonic_increasing is True
assert index._is_strictly_monotonic_decreasing is True
index = RangeIndex(2, 1)
assert index.is_monotonic is True
assert index.is_monotonic_increasing is True
assert index.is_monotonic_decreasing is True
assert index._is_strictly_monotonic_increasing is True
assert index._is_strictly_monotonic_decreasing is True
index = RangeIndex(1, 1)
assert index.is_monotonic is True
assert index.is_monotonic_increasing is True
assert index.is_monotonic_decreasing is True
assert index._is_strictly_monotonic_increasing is True
assert index._is_strictly_monotonic_decreasing is True
def test_equals_range(self):
equiv_pairs = [
(RangeIndex(0, 9, 2), RangeIndex(0, 10, 2)),
(RangeIndex(0), RangeIndex(1, -1, 3)),
(RangeIndex(1, 2, 3), RangeIndex(1, 3, 4)),
(RangeIndex(0, -9, -2), RangeIndex(0, -10, -2)),
]
for left, right in equiv_pairs:
assert left.equals(right)
assert right.equals(left)
def test_logical_compat(self, simple_index):
idx = simple_index
assert idx.all() == idx.values.all()
assert idx.any() == idx.values.any()
def test_identical(self, simple_index):
index = simple_index
i = Index(index.copy())
assert i.identical(index)
# we don't allow object dtype for RangeIndex
if isinstance(index, RangeIndex):
return
same_values_different_type = Index(i, dtype=object)
assert not i.identical(same_values_different_type)
i = index.copy(dtype=object)
i = i.rename("foo")
same_values = Index(i, dtype=object)
assert same_values.identical(index.copy(dtype=object))
assert not i.identical(index)
assert Index(same_values, name="foo", dtype=object).identical(i)
assert not index.copy(dtype=object).identical(index.copy(dtype="int64"))
def test_nbytes(self):
# memory savings vs int index
idx = RangeIndex(0, 1000)
assert idx.nbytes < Int64Index(idx._values).nbytes / 10
# constant memory usage
i2 = RangeIndex(0, 10)
assert idx.nbytes == i2.nbytes
@pytest.mark.parametrize(
"start,stop,step",
[
# can't
("foo", "bar", "baz"),
# shouldn't
("0", "1", "2"),
],
)
def test_cant_or_shouldnt_cast(self, start, stop, step):
msg = f"Wrong type {type(start)} for value {start}"
with pytest.raises(TypeError, match=msg):
RangeIndex(start, stop, step)
def test_view_index(self, simple_index):
index = simple_index
index.view(Index)
def test_prevent_casting(self, simple_index):
index = simple_index
result = index.astype("O")
assert result.dtype == np.object_
def test_repr_roundtrip(self, simple_index):
index = simple_index
tm.assert_index_equal(eval(repr(index)), index)
def test_slice_keep_name(self):
idx = RangeIndex(1, 2, name="asdf")
assert idx.name == idx[1:].name
def test_has_duplicates(self, index):
assert index.is_unique
assert not index.has_duplicates
def test_extended_gcd(self, simple_index):
index = simple_index
result = index._extended_gcd(6, 10)
assert result[0] == result[1] * 6 + result[2] * 10
assert 2 == result[0]
result = index._extended_gcd(10, 6)
assert 2 == result[1] * 10 + result[2] * 6
assert 2 == result[0]
def test_min_fitting_element(self):
result = RangeIndex(0, 20, 2)._min_fitting_element(1)
assert 2 == result
result = RangeIndex(1, 6)._min_fitting_element(1)
assert 1 == result
result = RangeIndex(18, -2, -2)._min_fitting_element(1)
assert 2 == result
result = RangeIndex(5, 0, -1)._min_fitting_element(1)
assert 1 == result
big_num = 500000000000000000000000
result = RangeIndex(5, big_num * 2, 1)._min_fitting_element(big_num)
assert big_num == result
def test_pickle_compat_construction(self):
# RangeIndex() is a valid constructor
pass
def test_slice_specialised(self, simple_index):
index = simple_index
index.name = "foo"
# scalar indexing
res = index[1]
expected = 2
assert res == expected
res = index[-1]
expected = 18
assert res == expected
# slicing
# slice value completion
index_slice = index[:]
expected = index
tm.assert_index_equal(index_slice, expected)
# positive slice values
index_slice = index[7:10:2]
expected = Index(np.array([14, 18]), name="foo")
tm.assert_index_equal(index_slice, expected, exact="equiv")
# negative slice values
index_slice = index[-1:-5:-2]
expected = Index(np.array([18, 14]), name="foo")
tm.assert_index_equal(index_slice, expected, exact="equiv")
# stop overshoot
index_slice = index[2:100:4]
expected = Index(np.array([4, 12]), name="foo")
tm.assert_index_equal(index_slice, expected, exact="equiv")
# reverse
index_slice = index[::-1]
expected = Index(index.values[::-1], name="foo")
tm.assert_index_equal(index_slice, expected, exact="equiv")
index_slice = index[-8::-1]
expected = Index(np.array([4, 2, 0]), name="foo")
tm.assert_index_equal(index_slice, expected, exact="equiv")
index_slice = index[-40::-1]
expected = Index(np.array([], dtype=np.int64), name="foo")
tm.assert_index_equal(index_slice, expected, exact="equiv")
index_slice = index[40::-1]
expected = Index(index.values[40::-1], name="foo")
tm.assert_index_equal(index_slice, expected, exact="equiv")
index_slice = index[10::-1]
expected = Index(index.values[::-1], name="foo")
tm.assert_index_equal(index_slice, expected, exact="equiv")
@pytest.mark.parametrize("step", set(range(-5, 6)) - {0})
def test_len_specialised(self, step):
# make sure that our len is the same as np.arange calc
start, stop = (0, 5) if step > 0 else (5, 0)
arr = np.arange(start, stop, step)
index = RangeIndex(start, stop, step)
assert len(index) == len(arr)
index = RangeIndex(stop, start, step)
assert len(index) == 0
@pytest.fixture(
params=[
([RI(1, 12, 5)], RI(1, 12, 5)),
([RI(0, 6, 4)], RI(0, 6, 4)),
([RI(1, 3), RI(3, 7)], RI(1, 7)),
([RI(1, 5, 2), RI(5, 6)], RI(1, 6, 2)),
([RI(1, 3, 2), RI(4, 7, 3)], RI(1, 7, 3)),
([RI(-4, 3, 2), RI(4, 7, 2)], RI(-4, 7, 2)),
([RI(-4, -8), RI(-8, -12)], RI(0, 0)),
([RI(-4, -8), RI(3, -4)], RI(0, 0)),
([RI(-4, -8), RI(3, 5)], RI(3, 5)),
([RI(-4, -2), RI(3, 5)], I64([-4, -3, 3, 4])),
([RI(-2), RI(3, 5)], RI(3, 5)),
([RI(2), RI(2)], I64([0, 1, 0, 1])),
([RI(2), RI(2, 5), RI(5, 8, 4)], RI(0, 6)),
([RI(2), RI(3, 5), RI(5, 8, 4)], I64([0, 1, 3, 4, 5])),
([RI(-2, 2), RI(2, 5), RI(5, 8, 4)], RI(-2, 6)),
([RI(3), I64([-1, 3, 15])], I64([0, 1, 2, -1, 3, 15])),
([RI(3), F64([-1, 3.1, 15.0])], F64([0, 1, 2, -1, 3.1, 15.0])),
([RI(3), OI(["a", None, 14])], OI([0, 1, 2, "a", None, 14])),
([RI(3, 1), OI(["a", None, 14])], OI(["a", None, 14])),
]
)
def appends(self, request):
"""Inputs and expected outputs for RangeIndex.append test"""
return request.param
def test_append(self, appends):
# GH16212
indices, expected = appends
result = indices[0].append(indices[1:])
tm.assert_index_equal(result, expected, exact=True)
if len(indices) == 2:
# Append single item rather than list
result2 = indices[0].append(indices[1])
tm.assert_index_equal(result2, expected, exact=True)
def test_engineless_lookup(self):
# GH 16685
# Standard lookup on RangeIndex should not require the engine to be
# created
idx = RangeIndex(2, 10, 3)
assert idx.get_loc(5) == 1
tm.assert_numpy_array_equal(
idx.get_indexer([2, 8]), ensure_platform_int(np.array([0, 2]))
)
with pytest.raises(KeyError, match="3"):
idx.get_loc(3)
assert "_engine" not in idx._cache
# Different types of scalars can be excluded immediately, no need to
# use the _engine
with pytest.raises(KeyError, match="'a'"):
idx.get_loc("a")
assert "_engine" not in idx._cache
def test_format_empty(self):
# GH35712
empty_idx = self._index_cls(0)
assert empty_idx.format() == []
assert empty_idx.format(name=True) == [""]
@pytest.mark.parametrize(
"RI",
[
RangeIndex(0, -1, -1),
RangeIndex(0, 1, 1),
RangeIndex(1, 3, 2),
RangeIndex(0, -1, -2),
RangeIndex(-3, -5, -2),
],
)
def test_append_len_one(self, RI):
# GH39401
result = RI.append([])
tm.assert_index_equal(result, RI, exact=True)
@pytest.mark.parametrize("base", [RangeIndex(0, 2), Index([0, 1])])
def test_isin_range(self, base):
# GH#41151
values = RangeIndex(0, 1)
result = base.isin(values)
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
def test_sort_values_key(self):
# GH#43666
sort_order = {8: 2, 6: 0, 4: 8, 2: 10, 0: 12}
values = RangeIndex(0, 10, 2)
result = values.sort_values(key=lambda x: x.map(sort_order))
expected = Index([4, 8, 6, 0, 2], dtype="int64")
tm.assert_index_equal(result, expected, check_exact=True)