A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/indexes/multi/conftest.py

77 lines
2.1 KiB

import numpy as np
import pytest
import pandas as pd
from pandas import (
Index,
MultiIndex,
)
# Note: identical the the "multi" entry in the top-level "index" fixture
@pytest.fixture
def idx():
# a MultiIndex used to test the general functionality of the
# general functionality of this object
major_axis = Index(["foo", "bar", "baz", "qux"])
minor_axis = Index(["one", "two"])
major_codes = np.array([0, 0, 1, 2, 3, 3])
minor_codes = np.array([0, 1, 0, 1, 0, 1])
index_names = ["first", "second"]
mi = MultiIndex(
levels=[major_axis, minor_axis],
codes=[major_codes, minor_codes],
names=index_names,
verify_integrity=False,
)
return mi
@pytest.fixture
def idx_dup():
# compare tests/indexes/multi/conftest.py
major_axis = Index(["foo", "bar", "baz", "qux"])
minor_axis = Index(["one", "two"])
major_codes = np.array([0, 0, 1, 0, 1, 1])
minor_codes = np.array([0, 1, 0, 1, 0, 1])
index_names = ["first", "second"]
mi = MultiIndex(
levels=[major_axis, minor_axis],
codes=[major_codes, minor_codes],
names=index_names,
verify_integrity=False,
)
return mi
@pytest.fixture
def index_names():
# names that match those in the idx fixture for testing equality of
# names assigned to the idx
return ["first", "second"]
@pytest.fixture
def narrow_multi_index():
"""
Return a MultiIndex that is narrower than the display (<80 characters).
"""
n = 1000
ci = pd.CategoricalIndex(list("a" * n) + (["abc"] * n))
dti = pd.date_range("2000-01-01", freq="s", periods=n * 2)
return MultiIndex.from_arrays([ci, ci.codes + 9, dti], names=["a", "b", "dti"])
@pytest.fixture
def wide_multi_index():
"""
Return a MultiIndex that is wider than the display (>80 characters).
"""
n = 1000
ci = pd.CategoricalIndex(list("a" * n) + (["abc"] * n))
dti = pd.date_range("2000-01-01", freq="s", periods=n * 2)
levels = [ci, ci.codes + 9, dti, dti, dti]
names = ["a", "b", "dti_1", "dti_2", "dti_3"]
return MultiIndex.from_arrays(levels, names=names)