A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/indexes/datetimes/test_reindex.py

56 lines
2.1 KiB

from datetime import timedelta
import numpy as np
from pandas import (
DatetimeIndex,
date_range,
)
import pandas._testing as tm
class TestDatetimeIndexReindex:
def test_reindex_preserves_tz_if_target_is_empty_list_or_array(self):
# GH#7774
index = date_range("2013-01-01", periods=3, tz="US/Eastern")
assert str(index.reindex([])[0].tz) == "US/Eastern"
assert str(index.reindex(np.array([]))[0].tz) == "US/Eastern"
def test_reindex_with_same_tz_nearest(self):
# GH#32740
rng_a = date_range("2010-01-01", "2010-01-02", periods=24, tz="utc")
rng_b = date_range("2010-01-01", "2010-01-02", periods=23, tz="utc")
result1, result2 = rng_a.reindex(
rng_b, method="nearest", tolerance=timedelta(seconds=20)
)
expected_list1 = [
"2010-01-01 00:00:00",
"2010-01-01 01:05:27.272727272",
"2010-01-01 02:10:54.545454545",
"2010-01-01 03:16:21.818181818",
"2010-01-01 04:21:49.090909090",
"2010-01-01 05:27:16.363636363",
"2010-01-01 06:32:43.636363636",
"2010-01-01 07:38:10.909090909",
"2010-01-01 08:43:38.181818181",
"2010-01-01 09:49:05.454545454",
"2010-01-01 10:54:32.727272727",
"2010-01-01 12:00:00",
"2010-01-01 13:05:27.272727272",
"2010-01-01 14:10:54.545454545",
"2010-01-01 15:16:21.818181818",
"2010-01-01 16:21:49.090909090",
"2010-01-01 17:27:16.363636363",
"2010-01-01 18:32:43.636363636",
"2010-01-01 19:38:10.909090909",
"2010-01-01 20:43:38.181818181",
"2010-01-01 21:49:05.454545454",
"2010-01-01 22:54:32.727272727",
"2010-01-02 00:00:00",
]
expected1 = DatetimeIndex(
expected_list1, dtype="datetime64[ns, UTC]", freq=None
)
expected2 = np.array([0] + [-1] * 21 + [23], dtype=np.dtype("intp"))
tm.assert_index_equal(result1, expected1)
tm.assert_numpy_array_equal(result2, expected2)