A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/indexes/datetimes/test_delete.py

138 lines
4.5 KiB

import pytest
from pandas import (
DatetimeIndex,
Series,
date_range,
)
import pandas._testing as tm
class TestDelete:
def test_delete(self):
idx = date_range(start="2000-01-01", periods=5, freq="M", name="idx")
# preserve freq
expected_0 = date_range(start="2000-02-01", periods=4, freq="M", name="idx")
expected_4 = date_range(start="2000-01-01", periods=4, freq="M", name="idx")
# reset freq to None
expected_1 = DatetimeIndex(
["2000-01-31", "2000-03-31", "2000-04-30", "2000-05-31"],
freq=None,
name="idx",
)
cases = {
0: expected_0,
-5: expected_0,
-1: expected_4,
4: expected_4,
1: expected_1,
}
for n, expected in cases.items():
result = idx.delete(n)
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freq == expected.freq
with pytest.raises((IndexError, ValueError), match="out of bounds"):
# either depending on numpy version
idx.delete(5)
for tz in [None, "Asia/Tokyo", "US/Pacific"]:
idx = date_range(
start="2000-01-01 09:00", periods=10, freq="H", name="idx", tz=tz
)
expected = date_range(
start="2000-01-01 10:00", periods=9, freq="H", name="idx", tz=tz
)
result = idx.delete(0)
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freqstr == "H"
assert result.tz == expected.tz
expected = date_range(
start="2000-01-01 09:00", periods=9, freq="H", name="idx", tz=tz
)
result = idx.delete(-1)
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freqstr == "H"
assert result.tz == expected.tz
def test_delete_slice(self):
idx = date_range(start="2000-01-01", periods=10, freq="D", name="idx")
# preserve freq
expected_0_2 = date_range(start="2000-01-04", periods=7, freq="D", name="idx")
expected_7_9 = date_range(start="2000-01-01", periods=7, freq="D", name="idx")
# reset freq to None
expected_3_5 = DatetimeIndex(
[
"2000-01-01",
"2000-01-02",
"2000-01-03",
"2000-01-07",
"2000-01-08",
"2000-01-09",
"2000-01-10",
],
freq=None,
name="idx",
)
cases = {
(0, 1, 2): expected_0_2,
(7, 8, 9): expected_7_9,
(3, 4, 5): expected_3_5,
}
for n, expected in cases.items():
result = idx.delete(n)
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freq == expected.freq
result = idx.delete(slice(n[0], n[-1] + 1))
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freq == expected.freq
for tz in [None, "Asia/Tokyo", "US/Pacific"]:
ts = Series(
1,
index=date_range(
"2000-01-01 09:00", periods=10, freq="H", name="idx", tz=tz
),
)
# preserve freq
result = ts.drop(ts.index[:5]).index
expected = date_range(
"2000-01-01 14:00", periods=5, freq="H", name="idx", tz=tz
)
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freq == expected.freq
assert result.tz == expected.tz
# reset freq to None
result = ts.drop(ts.index[[1, 3, 5, 7, 9]]).index
expected = DatetimeIndex(
[
"2000-01-01 09:00",
"2000-01-01 11:00",
"2000-01-01 13:00",
"2000-01-01 15:00",
"2000-01-01 17:00",
],
freq=None,
name="idx",
tz=tz,
)
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freq == expected.freq
assert result.tz == expected.tz