A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/groupby/aggregate/test_numba.py

216 lines
7.1 KiB

import numpy as np
import pytest
from pandas.errors import NumbaUtilError
import pandas.util._test_decorators as td
from pandas import (
DataFrame,
Index,
NamedAgg,
Series,
option_context,
)
import pandas._testing as tm
from pandas.core.util.numba_ import NUMBA_FUNC_CACHE
@td.skip_if_no("numba")
def test_correct_function_signature():
def incorrect_function(x):
return sum(x) * 2.7
data = DataFrame(
{"key": ["a", "a", "b", "b", "a"], "data": [1.0, 2.0, 3.0, 4.0, 5.0]},
columns=["key", "data"],
)
with pytest.raises(NumbaUtilError, match="The first 2"):
data.groupby("key").agg(incorrect_function, engine="numba")
with pytest.raises(NumbaUtilError, match="The first 2"):
data.groupby("key")["data"].agg(incorrect_function, engine="numba")
@td.skip_if_no("numba")
def test_check_nopython_kwargs():
def incorrect_function(x, **kwargs):
return sum(x) * 2.7
data = DataFrame(
{"key": ["a", "a", "b", "b", "a"], "data": [1.0, 2.0, 3.0, 4.0, 5.0]},
columns=["key", "data"],
)
with pytest.raises(NumbaUtilError, match="numba does not support"):
data.groupby("key").agg(incorrect_function, engine="numba", a=1)
with pytest.raises(NumbaUtilError, match="numba does not support"):
data.groupby("key")["data"].agg(incorrect_function, engine="numba", a=1)
@td.skip_if_no("numba")
@pytest.mark.filterwarnings("ignore:\n")
# Filter warnings when parallel=True and the function can't be parallelized by Numba
@pytest.mark.parametrize("jit", [True, False])
@pytest.mark.parametrize("pandas_obj", ["Series", "DataFrame"])
def test_numba_vs_cython(jit, pandas_obj, nogil, parallel, nopython):
def func_numba(values, index):
return np.mean(values) * 2.7
if jit:
# Test accepted jitted functions
import numba
func_numba = numba.jit(func_numba)
data = DataFrame(
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
)
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
grouped = data.groupby(0)
if pandas_obj == "Series":
grouped = grouped[1]
result = grouped.agg(func_numba, engine="numba", engine_kwargs=engine_kwargs)
expected = grouped.agg(lambda x: np.mean(x) * 2.7, engine="cython")
tm.assert_equal(result, expected)
@td.skip_if_no("numba")
@pytest.mark.filterwarnings("ignore:\n")
# Filter warnings when parallel=True and the function can't be parallelized by Numba
@pytest.mark.parametrize("jit", [True, False])
@pytest.mark.parametrize("pandas_obj", ["Series", "DataFrame"])
def test_cache(jit, pandas_obj, nogil, parallel, nopython):
# Test that the functions are cached correctly if we switch functions
def func_1(values, index):
return np.mean(values) - 3.4
def func_2(values, index):
return np.mean(values) * 2.7
if jit:
import numba
func_1 = numba.jit(func_1)
func_2 = numba.jit(func_2)
data = DataFrame(
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
)
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
grouped = data.groupby(0)
if pandas_obj == "Series":
grouped = grouped[1]
result = grouped.agg(func_1, engine="numba", engine_kwargs=engine_kwargs)
expected = grouped.agg(lambda x: np.mean(x) - 3.4, engine="cython")
tm.assert_equal(result, expected)
# func_1 should be in the cache now
assert (func_1, "groupby_agg") in NUMBA_FUNC_CACHE
# Add func_2 to the cache
result = grouped.agg(func_2, engine="numba", engine_kwargs=engine_kwargs)
expected = grouped.agg(lambda x: np.mean(x) * 2.7, engine="cython")
tm.assert_equal(result, expected)
assert (func_2, "groupby_agg") in NUMBA_FUNC_CACHE
# Retest func_1 which should use the cache
result = grouped.agg(func_1, engine="numba", engine_kwargs=engine_kwargs)
expected = grouped.agg(lambda x: np.mean(x) - 3.4, engine="cython")
tm.assert_equal(result, expected)
@td.skip_if_no("numba")
def test_use_global_config():
def func_1(values, index):
return np.mean(values) - 3.4
data = DataFrame(
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
)
grouped = data.groupby(0)
expected = grouped.agg(func_1, engine="numba")
with option_context("compute.use_numba", True):
result = grouped.agg(func_1, engine=None)
tm.assert_frame_equal(expected, result)
@td.skip_if_no("numba")
@pytest.mark.parametrize(
"agg_func",
[
["min", "max"],
"min",
{"B": ["min", "max"], "C": "sum"},
NamedAgg(column="B", aggfunc="min"),
],
)
def test_multifunc_notimplimented(agg_func):
data = DataFrame(
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
)
grouped = data.groupby(0)
with pytest.raises(NotImplementedError, match="Numba engine can"):
grouped.agg(agg_func, engine="numba")
with pytest.raises(NotImplementedError, match="Numba engine can"):
grouped[1].agg(agg_func, engine="numba")
@td.skip_if_no("numba")
def test_args_not_cached():
# GH 41647
def sum_last(values, index, n):
return values[-n:].sum()
df = DataFrame({"id": [0, 0, 1, 1], "x": [1, 1, 1, 1]})
grouped_x = df.groupby("id")["x"]
result = grouped_x.agg(sum_last, 1, engine="numba")
expected = Series([1.0] * 2, name="x", index=Index([0, 1], name="id"))
tm.assert_series_equal(result, expected)
result = grouped_x.agg(sum_last, 2, engine="numba")
expected = Series([2.0] * 2, name="x", index=Index([0, 1], name="id"))
tm.assert_series_equal(result, expected)
@td.skip_if_no("numba")
def test_index_data_correctly_passed():
# GH 43133
def f(values, index):
return np.mean(index)
df = DataFrame({"group": ["A", "A", "B"], "v": [4, 5, 6]}, index=[-1, -2, -3])
result = df.groupby("group").aggregate(f, engine="numba")
expected = DataFrame(
[-1.5, -3.0], columns=["v"], index=Index(["A", "B"], name="group")
)
tm.assert_frame_equal(result, expected)
@td.skip_if_no("numba")
def test_multiindex_one_key(nogil, parallel, nopython):
def numba_func(values, index):
return 1
df = DataFrame([{"A": 1, "B": 2, "C": 3}]).set_index(["A", "B"])
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
result = df.groupby("A").agg(
numba_func, engine="numba", engine_kwargs=engine_kwargs
)
expected = DataFrame([1.0], index=Index([1], name="A"), columns=["C"])
tm.assert_frame_equal(result, expected)
@td.skip_if_no("numba")
def test_multiindex_multi_key_not_supported(nogil, parallel, nopython):
def numba_func(values, index):
return 1
df = DataFrame([{"A": 1, "B": 2, "C": 3}]).set_index(["A", "B"])
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
with pytest.raises(NotImplementedError, match="More than 1 grouping labels"):
df.groupby(["A", "B"]).agg(
numba_func, engine="numba", engine_kwargs=engine_kwargs
)