A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/frame/methods/test_update.py

161 lines
5.0 KiB

import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
Series,
date_range,
)
import pandas._testing as tm
class TestDataFrameUpdate:
def test_update_nan(self):
# #15593 #15617
# test 1
df1 = DataFrame({"A": [1.0, 2, 3], "B": date_range("2000", periods=3)})
df2 = DataFrame({"A": [None, 2, 3]})
expected = df1.copy()
df1.update(df2, overwrite=False)
tm.assert_frame_equal(df1, expected)
# test 2
df1 = DataFrame({"A": [1.0, None, 3], "B": date_range("2000", periods=3)})
df2 = DataFrame({"A": [None, 2, 3]})
expected = DataFrame({"A": [1.0, 2, 3], "B": date_range("2000", periods=3)})
df1.update(df2, overwrite=False)
tm.assert_frame_equal(df1, expected)
def test_update(self):
df = DataFrame(
[[1.5, np.nan, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]]
)
other = DataFrame([[3.6, 2.0, np.nan], [np.nan, np.nan, 7]], index=[1, 3])
df.update(other)
expected = DataFrame(
[[1.5, np.nan, 3], [3.6, 2, 3], [1.5, np.nan, 3], [1.5, np.nan, 7.0]]
)
tm.assert_frame_equal(df, expected)
def test_update_dtypes(self):
# gh 3016
df = DataFrame(
[[1.0, 2.0, False, True], [4.0, 5.0, True, False]],
columns=["A", "B", "bool1", "bool2"],
)
other = DataFrame([[45, 45]], index=[0], columns=["A", "B"])
df.update(other)
expected = DataFrame(
[[45.0, 45.0, False, True], [4.0, 5.0, True, False]],
columns=["A", "B", "bool1", "bool2"],
)
tm.assert_frame_equal(df, expected)
def test_update_nooverwrite(self):
df = DataFrame(
[[1.5, np.nan, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]]
)
other = DataFrame([[3.6, 2.0, np.nan], [np.nan, np.nan, 7]], index=[1, 3])
df.update(other, overwrite=False)
expected = DataFrame(
[[1.5, np.nan, 3], [1.5, 2, 3], [1.5, np.nan, 3], [1.5, np.nan, 3.0]]
)
tm.assert_frame_equal(df, expected)
def test_update_filtered(self):
df = DataFrame(
[[1.5, np.nan, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]]
)
other = DataFrame([[3.6, 2.0, np.nan], [np.nan, np.nan, 7]], index=[1, 3])
df.update(other, filter_func=lambda x: x > 2)
expected = DataFrame(
[[1.5, np.nan, 3], [1.5, np.nan, 3], [1.5, np.nan, 3], [1.5, np.nan, 7.0]]
)
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize(
"bad_kwarg, exception, msg",
[
# errors must be 'ignore' or 'raise'
({"errors": "something"}, ValueError, "The parameter errors must.*"),
({"join": "inner"}, NotImplementedError, "Only left join is supported"),
],
)
def test_update_raise_bad_parameter(self, bad_kwarg, exception, msg):
df = DataFrame([[1.5, 1, 3.0]])
with pytest.raises(exception, match=msg):
df.update(df, **bad_kwarg)
def test_update_raise_on_overlap(self):
df = DataFrame(
[[1.5, 1, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]]
)
other = DataFrame([[2.0, np.nan], [np.nan, 7]], index=[1, 3], columns=[1, 2])
with pytest.raises(ValueError, match="Data overlaps"):
df.update(other, errors="raise")
def test_update_from_non_df(self):
d = {"a": Series([1, 2, 3, 4]), "b": Series([5, 6, 7, 8])}
df = DataFrame(d)
d["a"] = Series([5, 6, 7, 8])
df.update(d)
expected = DataFrame(d)
tm.assert_frame_equal(df, expected)
d = {"a": [1, 2, 3, 4], "b": [5, 6, 7, 8]}
df = DataFrame(d)
d["a"] = [5, 6, 7, 8]
df.update(d)
expected = DataFrame(d)
tm.assert_frame_equal(df, expected)
def test_update_datetime_tz(self):
# GH 25807
result = DataFrame([pd.Timestamp("2019", tz="UTC")])
result.update(result)
expected = DataFrame([pd.Timestamp("2019", tz="UTC")])
tm.assert_frame_equal(result, expected)
def test_update_with_different_dtype(self):
# GH#3217
df = DataFrame({"a": [1, 3], "b": [np.nan, 2]})
df["c"] = np.nan
df["c"].update(Series(["foo"], index=[0]))
expected = DataFrame({"a": [1, 3], "b": [np.nan, 2], "c": ["foo", np.nan]})
tm.assert_frame_equal(df, expected)
@td.skip_array_manager_invalid_test
def test_update_modify_view(self):
# GH#47188
df = DataFrame({"A": ["1", np.nan], "B": ["100", np.nan]})
df2 = DataFrame({"A": ["a", "x"], "B": ["100", "200"]})
result_view = df2[:]
df2.update(df)
expected = DataFrame({"A": ["1", "x"], "B": ["100", "200"]})
tm.assert_frame_equal(df2, expected)
tm.assert_frame_equal(result_view, expected)