A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/frame/methods/test_transpose.py

118 lines
3.7 KiB

import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
DataFrame,
DatetimeIndex,
date_range,
)
import pandas._testing as tm
class TestTranspose:
def test_transpose_empty_preserves_datetimeindex(self):
# GH#41382
df = DataFrame(index=DatetimeIndex([]))
expected = DatetimeIndex([], dtype="datetime64[ns]", freq=None)
result1 = df.T.sum().index
result2 = df.sum(axis=1).index
tm.assert_index_equal(result1, expected)
tm.assert_index_equal(result2, expected)
def test_transpose_tzaware_1col_single_tz(self):
# GH#26825
dti = date_range("2016-04-05 04:30", periods=3, tz="UTC")
df = DataFrame(dti)
assert (df.dtypes == dti.dtype).all()
res = df.T
assert (res.dtypes == dti.dtype).all()
def test_transpose_tzaware_2col_single_tz(self):
# GH#26825
dti = date_range("2016-04-05 04:30", periods=3, tz="UTC")
df3 = DataFrame({"A": dti, "B": dti})
assert (df3.dtypes == dti.dtype).all()
res3 = df3.T
assert (res3.dtypes == dti.dtype).all()
def test_transpose_tzaware_2col_mixed_tz(self):
# GH#26825
dti = date_range("2016-04-05 04:30", periods=3, tz="UTC")
dti2 = dti.tz_convert("US/Pacific")
df4 = DataFrame({"A": dti, "B": dti2})
assert (df4.dtypes == [dti.dtype, dti2.dtype]).all()
assert (df4.T.dtypes == object).all()
tm.assert_frame_equal(df4.T.T, df4)
@pytest.mark.parametrize("tz", [None, "America/New_York"])
def test_transpose_preserves_dtindex_equality_with_dst(self, tz):
# GH#19970
idx = date_range("20161101", "20161130", freq="4H", tz=tz)
df = DataFrame({"a": range(len(idx)), "b": range(len(idx))}, index=idx)
result = df.T == df.T
expected = DataFrame(True, index=list("ab"), columns=idx)
tm.assert_frame_equal(result, expected)
def test_transpose_object_to_tzaware_mixed_tz(self):
# GH#26825
dti = date_range("2016-04-05 04:30", periods=3, tz="UTC")
dti2 = dti.tz_convert("US/Pacific")
# mixed all-tzaware dtypes
df2 = DataFrame([dti, dti2])
assert (df2.dtypes == object).all()
res2 = df2.T
assert (res2.dtypes == [dti.dtype, dti2.dtype]).all()
def test_transpose_uint64(self, uint64_frame):
result = uint64_frame.T
expected = DataFrame(uint64_frame.values.T)
expected.index = ["A", "B"]
tm.assert_frame_equal(result, expected)
def test_transpose_float(self, float_frame):
frame = float_frame
dft = frame.T
for idx, series in dft.items():
for col, value in series.items():
if np.isnan(value):
assert np.isnan(frame[col][idx])
else:
assert value == frame[col][idx]
# mixed type
index, data = tm.getMixedTypeDict()
mixed = DataFrame(data, index=index)
mixed_T = mixed.T
for col, s in mixed_T.items():
assert s.dtype == np.object_
@td.skip_array_manager_invalid_test
def test_transpose_get_view(self, float_frame):
dft = float_frame.T
dft.values[:, 5:10] = 5
assert (float_frame.values[5:10] == 5).all()
@td.skip_array_manager_invalid_test
def test_transpose_get_view_dt64tzget_view(self):
dti = date_range("2016-01-01", periods=6, tz="US/Pacific")
arr = dti._data.reshape(3, 2)
df = DataFrame(arr)
assert df._mgr.nblocks == 1
result = df.T
assert result._mgr.nblocks == 1
rtrip = result._mgr.blocks[0].values
assert np.shares_memory(arr._ndarray, rtrip._ndarray)