A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/frame/methods/test_round.py

218 lines
7.6 KiB

import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
date_range,
)
import pandas._testing as tm
class TestDataFrameRound:
def test_round(self):
# GH#2665
# Test that rounding an empty DataFrame does nothing
df = DataFrame()
tm.assert_frame_equal(df, df.round())
# Here's the test frame we'll be working with
df = DataFrame({"col1": [1.123, 2.123, 3.123], "col2": [1.234, 2.234, 3.234]})
# Default round to integer (i.e. decimals=0)
expected_rounded = DataFrame({"col1": [1.0, 2.0, 3.0], "col2": [1.0, 2.0, 3.0]})
tm.assert_frame_equal(df.round(), expected_rounded)
# Round with an integer
decimals = 2
expected_rounded = DataFrame(
{"col1": [1.12, 2.12, 3.12], "col2": [1.23, 2.23, 3.23]}
)
tm.assert_frame_equal(df.round(decimals), expected_rounded)
# This should also work with np.round (since np.round dispatches to
# df.round)
tm.assert_frame_equal(np.round(df, decimals), expected_rounded)
# Round with a list
round_list = [1, 2]
msg = "decimals must be an integer, a dict-like or a Series"
with pytest.raises(TypeError, match=msg):
df.round(round_list)
# Round with a dictionary
expected_rounded = DataFrame(
{"col1": [1.1, 2.1, 3.1], "col2": [1.23, 2.23, 3.23]}
)
round_dict = {"col1": 1, "col2": 2}
tm.assert_frame_equal(df.round(round_dict), expected_rounded)
# Incomplete dict
expected_partially_rounded = DataFrame(
{"col1": [1.123, 2.123, 3.123], "col2": [1.2, 2.2, 3.2]}
)
partial_round_dict = {"col2": 1}
tm.assert_frame_equal(df.round(partial_round_dict), expected_partially_rounded)
# Dict with unknown elements
wrong_round_dict = {"col3": 2, "col2": 1}
tm.assert_frame_equal(df.round(wrong_round_dict), expected_partially_rounded)
# float input to `decimals`
non_int_round_dict = {"col1": 1, "col2": 0.5}
msg = "Values in decimals must be integers"
with pytest.raises(TypeError, match=msg):
df.round(non_int_round_dict)
# String input
non_int_round_dict = {"col1": 1, "col2": "foo"}
with pytest.raises(TypeError, match=msg):
df.round(non_int_round_dict)
non_int_round_Series = Series(non_int_round_dict)
with pytest.raises(TypeError, match=msg):
df.round(non_int_round_Series)
# List input
non_int_round_dict = {"col1": 1, "col2": [1, 2]}
with pytest.raises(TypeError, match=msg):
df.round(non_int_round_dict)
non_int_round_Series = Series(non_int_round_dict)
with pytest.raises(TypeError, match=msg):
df.round(non_int_round_Series)
# Non integer Series inputs
non_int_round_Series = Series(non_int_round_dict)
with pytest.raises(TypeError, match=msg):
df.round(non_int_round_Series)
non_int_round_Series = Series(non_int_round_dict)
with pytest.raises(TypeError, match=msg):
df.round(non_int_round_Series)
# Negative numbers
negative_round_dict = {"col1": -1, "col2": -2}
big_df = df * 100
expected_neg_rounded = DataFrame(
{"col1": [110.0, 210, 310], "col2": [100.0, 200, 300]}
)
tm.assert_frame_equal(big_df.round(negative_round_dict), expected_neg_rounded)
# nan in Series round
nan_round_Series = Series({"col1": np.nan, "col2": 1})
with pytest.raises(TypeError, match=msg):
df.round(nan_round_Series)
# Make sure this doesn't break existing Series.round
tm.assert_series_equal(df["col1"].round(1), expected_rounded["col1"])
# named columns
# GH#11986
decimals = 2
expected_rounded = DataFrame(
{"col1": [1.12, 2.12, 3.12], "col2": [1.23, 2.23, 3.23]}
)
df.columns.name = "cols"
expected_rounded.columns.name = "cols"
tm.assert_frame_equal(df.round(decimals), expected_rounded)
# interaction of named columns & series
tm.assert_series_equal(df["col1"].round(decimals), expected_rounded["col1"])
tm.assert_series_equal(df.round(decimals)["col1"], expected_rounded["col1"])
def test_round_numpy(self):
# GH#12600
df = DataFrame([[1.53, 1.36], [0.06, 7.01]])
out = np.round(df, decimals=0)
expected = DataFrame([[2.0, 1.0], [0.0, 7.0]])
tm.assert_frame_equal(out, expected)
msg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.round(df, decimals=0, out=df)
def test_round_numpy_with_nan(self):
# See GH#14197
df = Series([1.53, np.nan, 0.06]).to_frame()
with tm.assert_produces_warning(None):
result = df.round()
expected = Series([2.0, np.nan, 0.0]).to_frame()
tm.assert_frame_equal(result, expected)
def test_round_mixed_type(self):
# GH#11885
df = DataFrame(
{
"col1": [1.1, 2.2, 3.3, 4.4],
"col2": ["1", "a", "c", "f"],
"col3": date_range("20111111", periods=4),
}
)
round_0 = DataFrame(
{
"col1": [1.0, 2.0, 3.0, 4.0],
"col2": ["1", "a", "c", "f"],
"col3": date_range("20111111", periods=4),
}
)
tm.assert_frame_equal(df.round(), round_0)
tm.assert_frame_equal(df.round(1), df)
tm.assert_frame_equal(df.round({"col1": 1}), df)
tm.assert_frame_equal(df.round({"col1": 0}), round_0)
tm.assert_frame_equal(df.round({"col1": 0, "col2": 1}), round_0)
tm.assert_frame_equal(df.round({"col3": 1}), df)
def test_round_with_duplicate_columns(self):
# GH#11611
df = DataFrame(
np.random.random([3, 3]),
columns=["A", "B", "C"],
index=["first", "second", "third"],
)
dfs = pd.concat((df, df), axis=1)
rounded = dfs.round()
tm.assert_index_equal(rounded.index, dfs.index)
decimals = Series([1, 0, 2], index=["A", "B", "A"])
msg = "Index of decimals must be unique"
with pytest.raises(ValueError, match=msg):
df.round(decimals)
def test_round_builtin(self):
# GH#11763
# Here's the test frame we'll be working with
df = DataFrame({"col1": [1.123, 2.123, 3.123], "col2": [1.234, 2.234, 3.234]})
# Default round to integer (i.e. decimals=0)
expected_rounded = DataFrame({"col1": [1.0, 2.0, 3.0], "col2": [1.0, 2.0, 3.0]})
tm.assert_frame_equal(round(df), expected_rounded)
def test_round_nonunique_categorical(self):
# See GH#21809
idx = pd.CategoricalIndex(["low"] * 3 + ["hi"] * 3)
df = DataFrame(np.random.rand(6, 3), columns=list("abc"))
expected = df.round(3)
expected.index = idx
df_categorical = df.copy().set_index(idx)
assert df_categorical.shape == (6, 3)
result = df_categorical.round(3)
assert result.shape == (6, 3)
tm.assert_frame_equal(result, expected)
def test_round_interval_category_columns(self):
# GH#30063
columns = pd.CategoricalIndex(pd.interval_range(0, 2))
df = DataFrame([[0.66, 1.1], [0.3, 0.25]], columns=columns)
result = df.round()
expected = DataFrame([[1.0, 1.0], [0.0, 0.0]], columns=columns)
tm.assert_frame_equal(result, expected)