A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/frame/methods/test_convert.py

59 lines
2.2 KiB

import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
)
import pandas._testing as tm
class TestConvert:
def test_convert_objects(self, float_string_frame):
oops = float_string_frame.T.T
converted = oops._convert(datetime=True)
tm.assert_frame_equal(converted, float_string_frame)
assert converted["A"].dtype == np.float64
# force numeric conversion
float_string_frame["H"] = "1."
float_string_frame["I"] = "1"
# add in some items that will be nan
length = len(float_string_frame)
float_string_frame["J"] = "1."
float_string_frame["K"] = "1"
float_string_frame.loc[float_string_frame.index[0:5], ["J", "K"]] = "garbled"
converted = float_string_frame._convert(datetime=True, numeric=True)
assert converted["H"].dtype == "float64"
assert converted["I"].dtype == "int64"
assert converted["J"].dtype == "float64"
assert converted["K"].dtype == "float64"
assert len(converted["J"].dropna()) == length - 5
assert len(converted["K"].dropna()) == length - 5
# via astype
converted = float_string_frame.copy()
converted["H"] = converted["H"].astype("float64")
converted["I"] = converted["I"].astype("int64")
assert converted["H"].dtype == "float64"
assert converted["I"].dtype == "int64"
# via astype, but errors
converted = float_string_frame.copy()
with pytest.raises(ValueError, match="invalid literal"):
converted["H"].astype("int32")
def test_convert_mixed_single_column(self):
# GH#4119, not converting a mixed type (e.g.floats and object)
# mixed in a single column
df = DataFrame({"s": Series([1, "na", 3, 4])})
result = df._convert(datetime=True, numeric=True)
expected = DataFrame({"s": Series([1, np.nan, 3, 4])})
tm.assert_frame_equal(result, expected)
def test_convert_objects_no_conversion(self):
mixed1 = DataFrame({"a": [1, 2, 3], "b": [4.0, 5, 6], "c": ["x", "y", "z"]})
mixed2 = mixed1._convert(datetime=True)
tm.assert_frame_equal(mixed1, mixed2)