A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/frame/methods/test_assign.py

84 lines
2.9 KiB

import pytest
from pandas import DataFrame
import pandas._testing as tm
class TestAssign:
def test_assign(self):
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
original = df.copy()
result = df.assign(C=df.B / df.A)
expected = df.copy()
expected["C"] = [4, 2.5, 2]
tm.assert_frame_equal(result, expected)
# lambda syntax
result = df.assign(C=lambda x: x.B / x.A)
tm.assert_frame_equal(result, expected)
# original is unmodified
tm.assert_frame_equal(df, original)
# Non-Series array-like
result = df.assign(C=[4, 2.5, 2])
tm.assert_frame_equal(result, expected)
# original is unmodified
tm.assert_frame_equal(df, original)
result = df.assign(B=df.B / df.A)
expected = expected.drop("B", axis=1).rename(columns={"C": "B"})
tm.assert_frame_equal(result, expected)
# overwrite
result = df.assign(A=df.A + df.B)
expected = df.copy()
expected["A"] = [5, 7, 9]
tm.assert_frame_equal(result, expected)
# lambda
result = df.assign(A=lambda x: x.A + x.B)
tm.assert_frame_equal(result, expected)
def test_assign_multiple(self):
df = DataFrame([[1, 4], [2, 5], [3, 6]], columns=["A", "B"])
result = df.assign(C=[7, 8, 9], D=df.A, E=lambda x: x.B)
expected = DataFrame(
[[1, 4, 7, 1, 4], [2, 5, 8, 2, 5], [3, 6, 9, 3, 6]], columns=list("ABCDE")
)
tm.assert_frame_equal(result, expected)
def test_assign_order(self):
# GH 9818
df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"])
result = df.assign(D=df.A + df.B, C=df.A - df.B)
expected = DataFrame([[1, 2, 3, -1], [3, 4, 7, -1]], columns=list("ABDC"))
tm.assert_frame_equal(result, expected)
result = df.assign(C=df.A - df.B, D=df.A + df.B)
expected = DataFrame([[1, 2, -1, 3], [3, 4, -1, 7]], columns=list("ABCD"))
tm.assert_frame_equal(result, expected)
def test_assign_bad(self):
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
# non-keyword argument
msg = r"assign\(\) takes 1 positional argument but 2 were given"
with pytest.raises(TypeError, match=msg):
df.assign(lambda x: x.A)
msg = "'DataFrame' object has no attribute 'C'"
with pytest.raises(AttributeError, match=msg):
df.assign(C=df.A, D=df.A + df.C)
def test_assign_dependent(self):
df = DataFrame({"A": [1, 2], "B": [3, 4]})
result = df.assign(C=df.A, D=lambda x: x["A"] + x["C"])
expected = DataFrame([[1, 3, 1, 2], [2, 4, 2, 4]], columns=list("ABCD"))
tm.assert_frame_equal(result, expected)
result = df.assign(C=lambda df: df.A, D=lambda df: df["A"] + df["C"])
expected = DataFrame([[1, 3, 1, 2], [2, 4, 2, 4]], columns=list("ABCD"))
tm.assert_frame_equal(result, expected)