A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/extension/base/getitem.py

486 lines
16 KiB

import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.tests.extension.base.base import BaseExtensionTests
class BaseGetitemTests(BaseExtensionTests):
"""Tests for ExtensionArray.__getitem__."""
def test_iloc_series(self, data):
ser = pd.Series(data)
result = ser.iloc[:4]
expected = pd.Series(data[:4])
self.assert_series_equal(result, expected)
result = ser.iloc[[0, 1, 2, 3]]
self.assert_series_equal(result, expected)
def test_iloc_frame(self, data):
df = pd.DataFrame({"A": data, "B": np.arange(len(data), dtype="int64")})
expected = pd.DataFrame({"A": data[:4]})
# slice -> frame
result = df.iloc[:4, [0]]
self.assert_frame_equal(result, expected)
# sequence -> frame
result = df.iloc[[0, 1, 2, 3], [0]]
self.assert_frame_equal(result, expected)
expected = pd.Series(data[:4], name="A")
# slice -> series
result = df.iloc[:4, 0]
self.assert_series_equal(result, expected)
# sequence -> series
result = df.iloc[:4, 0]
self.assert_series_equal(result, expected)
# GH#32959 slice columns with step
result = df.iloc[:, ::2]
self.assert_frame_equal(result, df[["A"]])
result = df[["B", "A"]].iloc[:, ::2]
self.assert_frame_equal(result, df[["B"]])
def test_iloc_frame_single_block(self, data):
# GH#32959 null slice along index, slice along columns with single-block
df = pd.DataFrame({"A": data})
result = df.iloc[:, :]
self.assert_frame_equal(result, df)
result = df.iloc[:, :1]
self.assert_frame_equal(result, df)
result = df.iloc[:, :2]
self.assert_frame_equal(result, df)
result = df.iloc[:, ::2]
self.assert_frame_equal(result, df)
result = df.iloc[:, 1:2]
self.assert_frame_equal(result, df.iloc[:, :0])
result = df.iloc[:, -1:]
self.assert_frame_equal(result, df)
def test_loc_series(self, data):
ser = pd.Series(data)
result = ser.loc[:3]
expected = pd.Series(data[:4])
self.assert_series_equal(result, expected)
result = ser.loc[[0, 1, 2, 3]]
self.assert_series_equal(result, expected)
def test_loc_frame(self, data):
df = pd.DataFrame({"A": data, "B": np.arange(len(data), dtype="int64")})
expected = pd.DataFrame({"A": data[:4]})
# slice -> frame
result = df.loc[:3, ["A"]]
self.assert_frame_equal(result, expected)
# sequence -> frame
result = df.loc[[0, 1, 2, 3], ["A"]]
self.assert_frame_equal(result, expected)
expected = pd.Series(data[:4], name="A")
# slice -> series
result = df.loc[:3, "A"]
self.assert_series_equal(result, expected)
# sequence -> series
result = df.loc[:3, "A"]
self.assert_series_equal(result, expected)
def test_loc_iloc_frame_single_dtype(self, data):
# GH#27110 bug in ExtensionBlock.iget caused df.iloc[n] to incorrectly
# return a scalar
df = pd.DataFrame({"A": data})
expected = pd.Series([data[2]], index=["A"], name=2, dtype=data.dtype)
result = df.loc[2]
self.assert_series_equal(result, expected)
expected = pd.Series(
[data[-1]], index=["A"], name=len(data) - 1, dtype=data.dtype
)
result = df.iloc[-1]
self.assert_series_equal(result, expected)
def test_getitem_scalar(self, data):
result = data[0]
assert isinstance(result, data.dtype.type)
result = pd.Series(data)[0]
assert isinstance(result, data.dtype.type)
def test_getitem_invalid(self, data):
# TODO: box over scalar, [scalar], (scalar,)?
msg = (
r"only integers, slices \(`:`\), ellipsis \(`...`\), numpy.newaxis "
r"\(`None`\) and integer or boolean arrays are valid indices"
)
with pytest.raises(IndexError, match=msg):
data["foo"]
with pytest.raises(IndexError, match=msg):
data[2.5]
ub = len(data)
msg = "|".join(
[
"list index out of range", # json
"index out of bounds", # pyarrow
"Out of bounds access", # Sparse
f"loc must be an integer between -{ub} and {ub}", # Sparse
f"index {ub+1} is out of bounds for axis 0 with size {ub}",
f"index -{ub+1} is out of bounds for axis 0 with size {ub}",
]
)
with pytest.raises(IndexError, match=msg):
data[ub + 1]
with pytest.raises(IndexError, match=msg):
data[-ub - 1]
def test_getitem_scalar_na(self, data_missing, na_cmp, na_value):
result = data_missing[0]
assert na_cmp(result, na_value)
def test_getitem_empty(self, data):
# Indexing with empty list
result = data[[]]
assert len(result) == 0
assert isinstance(result, type(data))
expected = data[np.array([], dtype="int64")]
self.assert_extension_array_equal(result, expected)
def test_getitem_mask(self, data):
# Empty mask, raw array
mask = np.zeros(len(data), dtype=bool)
result = data[mask]
assert len(result) == 0
assert isinstance(result, type(data))
# Empty mask, in series
mask = np.zeros(len(data), dtype=bool)
result = pd.Series(data)[mask]
assert len(result) == 0
assert result.dtype == data.dtype
# non-empty mask, raw array
mask[0] = True
result = data[mask]
assert len(result) == 1
assert isinstance(result, type(data))
# non-empty mask, in series
result = pd.Series(data)[mask]
assert len(result) == 1
assert result.dtype == data.dtype
def test_getitem_mask_raises(self, data):
mask = np.array([True, False])
msg = f"Boolean index has wrong length: 2 instead of {len(data)}"
with pytest.raises(IndexError, match=msg):
data[mask]
mask = pd.array(mask, dtype="boolean")
with pytest.raises(IndexError, match=msg):
data[mask]
def test_getitem_boolean_array_mask(self, data):
mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean")
result = data[mask]
assert len(result) == 0
assert isinstance(result, type(data))
result = pd.Series(data)[mask]
assert len(result) == 0
assert result.dtype == data.dtype
mask[:5] = True
expected = data.take([0, 1, 2, 3, 4])
result = data[mask]
self.assert_extension_array_equal(result, expected)
expected = pd.Series(expected)
result = pd.Series(data)[mask]
self.assert_series_equal(result, expected)
def test_getitem_boolean_na_treated_as_false(self, data):
# https://github.com/pandas-dev/pandas/issues/31503
mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean")
mask[:2] = pd.NA
mask[2:4] = True
result = data[mask]
expected = data[mask.fillna(False)]
self.assert_extension_array_equal(result, expected)
s = pd.Series(data)
result = s[mask]
expected = s[mask.fillna(False)]
self.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"idx",
[[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])],
ids=["list", "integer-array", "numpy-array"],
)
def test_getitem_integer_array(self, data, idx):
result = data[idx]
assert len(result) == 3
assert isinstance(result, type(data))
expected = data.take([0, 1, 2])
self.assert_extension_array_equal(result, expected)
expected = pd.Series(expected)
result = pd.Series(data)[idx]
self.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"idx",
[[0, 1, 2, pd.NA], pd.array([0, 1, 2, pd.NA], dtype="Int64")],
ids=["list", "integer-array"],
)
def test_getitem_integer_with_missing_raises(self, data, idx):
msg = "Cannot index with an integer indexer containing NA values"
with pytest.raises(ValueError, match=msg):
data[idx]
@pytest.mark.xfail(
reason="Tries label-based and raises KeyError; "
"in some cases raises when calling np.asarray"
)
@pytest.mark.parametrize(
"idx",
[[0, 1, 2, pd.NA], pd.array([0, 1, 2, pd.NA], dtype="Int64")],
ids=["list", "integer-array"],
)
def test_getitem_series_integer_with_missing_raises(self, data, idx):
msg = "Cannot index with an integer indexer containing NA values"
# TODO: this raises KeyError about labels not found (it tries label-based)
ser = pd.Series(data, index=[tm.rands(4) for _ in range(len(data))])
with pytest.raises(ValueError, match=msg):
ser[idx]
def test_getitem_slice(self, data):
# getitem[slice] should return an array
result = data[slice(0)] # empty
assert isinstance(result, type(data))
result = data[slice(1)] # scalar
assert isinstance(result, type(data))
def test_getitem_ellipsis_and_slice(self, data):
# GH#40353 this is called from getitem_block_index
result = data[..., :]
self.assert_extension_array_equal(result, data)
result = data[:, ...]
self.assert_extension_array_equal(result, data)
result = data[..., :3]
self.assert_extension_array_equal(result, data[:3])
result = data[:3, ...]
self.assert_extension_array_equal(result, data[:3])
result = data[..., ::2]
self.assert_extension_array_equal(result, data[::2])
result = data[::2, ...]
self.assert_extension_array_equal(result, data[::2])
def test_get(self, data):
# GH 20882
s = pd.Series(data, index=[2 * i for i in range(len(data))])
assert s.get(4) == s.iloc[2]
result = s.get([4, 6])
expected = s.iloc[[2, 3]]
self.assert_series_equal(result, expected)
result = s.get(slice(2))
expected = s.iloc[[0, 1]]
self.assert_series_equal(result, expected)
assert s.get(-1) is None
assert s.get(s.index.max() + 1) is None
s = pd.Series(data[:6], index=list("abcdef"))
assert s.get("c") == s.iloc[2]
result = s.get(slice("b", "d"))
expected = s.iloc[[1, 2, 3]]
self.assert_series_equal(result, expected)
result = s.get("Z")
assert result is None
assert s.get(4) == s.iloc[4]
assert s.get(-1) == s.iloc[-1]
assert s.get(len(s)) is None
# GH 21257
s = pd.Series(data)
s2 = s[::2]
assert s2.get(1) is None
def test_take_sequence(self, data):
result = pd.Series(data)[[0, 1, 3]]
assert result.iloc[0] == data[0]
assert result.iloc[1] == data[1]
assert result.iloc[2] == data[3]
def test_take(self, data, na_value, na_cmp):
result = data.take([0, -1])
assert result.dtype == data.dtype
assert result[0] == data[0]
assert result[1] == data[-1]
result = data.take([0, -1], allow_fill=True, fill_value=na_value)
assert result[0] == data[0]
assert na_cmp(result[1], na_value)
with pytest.raises(IndexError, match="out of bounds"):
data.take([len(data) + 1])
def test_take_empty(self, data, na_value, na_cmp):
empty = data[:0]
result = empty.take([-1], allow_fill=True)
assert na_cmp(result[0], na_value)
msg = "cannot do a non-empty take from an empty axes|out of bounds"
with pytest.raises(IndexError, match=msg):
empty.take([-1])
with pytest.raises(IndexError, match="cannot do a non-empty take"):
empty.take([0, 1])
def test_take_negative(self, data):
# https://github.com/pandas-dev/pandas/issues/20640
n = len(data)
result = data.take([0, -n, n - 1, -1])
expected = data.take([0, 0, n - 1, n - 1])
self.assert_extension_array_equal(result, expected)
def test_take_non_na_fill_value(self, data_missing):
fill_value = data_missing[1] # valid
na = data_missing[0]
arr = data_missing._from_sequence(
[na, fill_value, na], dtype=data_missing.dtype
)
result = arr.take([-1, 1], fill_value=fill_value, allow_fill=True)
expected = arr.take([1, 1])
self.assert_extension_array_equal(result, expected)
def test_take_pandas_style_negative_raises(self, data, na_value):
with pytest.raises(ValueError, match=""):
data.take([0, -2], fill_value=na_value, allow_fill=True)
@pytest.mark.parametrize("allow_fill", [True, False])
def test_take_out_of_bounds_raises(self, data, allow_fill):
arr = data[:3]
with pytest.raises(IndexError, match="out of bounds|out-of-bounds"):
arr.take(np.asarray([0, 3]), allow_fill=allow_fill)
def test_take_series(self, data):
s = pd.Series(data)
result = s.take([0, -1])
expected = pd.Series(
data._from_sequence([data[0], data[len(data) - 1]], dtype=s.dtype),
index=[0, len(data) - 1],
)
self.assert_series_equal(result, expected)
def test_reindex(self, data, na_value):
s = pd.Series(data)
result = s.reindex([0, 1, 3])
expected = pd.Series(data.take([0, 1, 3]), index=[0, 1, 3])
self.assert_series_equal(result, expected)
n = len(data)
result = s.reindex([-1, 0, n])
expected = pd.Series(
data._from_sequence([na_value, data[0], na_value], dtype=s.dtype),
index=[-1, 0, n],
)
self.assert_series_equal(result, expected)
result = s.reindex([n, n + 1])
expected = pd.Series(
data._from_sequence([na_value, na_value], dtype=s.dtype), index=[n, n + 1]
)
self.assert_series_equal(result, expected)
def test_reindex_non_na_fill_value(self, data_missing):
valid = data_missing[1]
na = data_missing[0]
arr = data_missing._from_sequence([na, valid], dtype=data_missing.dtype)
ser = pd.Series(arr)
result = ser.reindex([0, 1, 2], fill_value=valid)
expected = pd.Series(
data_missing._from_sequence([na, valid, valid], dtype=data_missing.dtype)
)
self.assert_series_equal(result, expected)
def test_loc_len1(self, data):
# see GH-27785 take_nd with indexer of len 1 resulting in wrong ndim
df = pd.DataFrame({"A": data})
res = df.loc[[0], "A"]
assert res.ndim == 1
assert res._mgr.arrays[0].ndim == 1
if hasattr(res._mgr, "blocks"):
assert res._mgr._block.ndim == 1
def test_item(self, data):
# https://github.com/pandas-dev/pandas/pull/30175
s = pd.Series(data)
result = s[:1].item()
assert result == data[0]
msg = "can only convert an array of size 1 to a Python scalar"
with pytest.raises(ValueError, match=msg):
s[:0].item()
with pytest.raises(ValueError, match=msg):
s.item()
def test_ellipsis_index(self):
# GH42430 1D slices over extension types turn into N-dimensional slices over
# ExtensionArrays
class CapturingStringArray(pd.arrays.StringArray):
"""Extend StringArray to capture arguments to __getitem__"""
def __getitem__(self, item):
self.last_item_arg = item
return super().__getitem__(item)
df = pd.DataFrame(
{"col1": CapturingStringArray(np.array(["hello", "world"], dtype=object))}
)
_ = df.iloc[:1]
# String comparison because there's no native way to compare slices.
# Before the fix for GH42430, last_item_arg would get set to the 2D slice
# (Ellipsis, slice(None, 1, None))
self.assert_equal(str(df["col1"].array.last_item_arg), "slice(None, 1, None)")