A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/arrays/timedeltas/test_reductions.py

214 lines
6.2 KiB

import numpy as np
import pytest
import pandas as pd
from pandas import Timedelta
import pandas._testing as tm
from pandas.core import nanops
from pandas.core.arrays import TimedeltaArray
class TestReductions:
@pytest.mark.parametrize("name", ["std", "min", "max", "median", "mean"])
@pytest.mark.parametrize("skipna", [True, False])
def test_reductions_empty(self, name, skipna):
tdi = pd.TimedeltaIndex([])
arr = tdi.array
result = getattr(tdi, name)(skipna=skipna)
assert result is pd.NaT
result = getattr(arr, name)(skipna=skipna)
assert result is pd.NaT
@pytest.mark.parametrize("skipna", [True, False])
def test_sum_empty(self, skipna):
tdi = pd.TimedeltaIndex([])
arr = tdi.array
result = tdi.sum(skipna=skipna)
assert isinstance(result, Timedelta)
assert result == Timedelta(0)
result = arr.sum(skipna=skipna)
assert isinstance(result, Timedelta)
assert result == Timedelta(0)
def test_min_max(self):
arr = TimedeltaArray._from_sequence(["3H", "3H", "NaT", "2H", "5H", "4H"])
result = arr.min()
expected = Timedelta("2H")
assert result == expected
result = arr.max()
expected = Timedelta("5H")
assert result == expected
result = arr.min(skipna=False)
assert result is pd.NaT
result = arr.max(skipna=False)
assert result is pd.NaT
def test_sum(self):
tdi = pd.TimedeltaIndex(["3H", "3H", "NaT", "2H", "5H", "4H"])
arr = tdi.array
result = arr.sum(skipna=True)
expected = Timedelta(hours=17)
assert isinstance(result, Timedelta)
assert result == expected
result = tdi.sum(skipna=True)
assert isinstance(result, Timedelta)
assert result == expected
result = arr.sum(skipna=False)
assert result is pd.NaT
result = tdi.sum(skipna=False)
assert result is pd.NaT
result = arr.sum(min_count=9)
assert result is pd.NaT
result = tdi.sum(min_count=9)
assert result is pd.NaT
result = arr.sum(min_count=1)
assert isinstance(result, Timedelta)
assert result == expected
result = tdi.sum(min_count=1)
assert isinstance(result, Timedelta)
assert result == expected
def test_npsum(self):
# GH#25282, GH#25335 np.sum should return a Timedelta, not timedelta64
tdi = pd.TimedeltaIndex(["3H", "3H", "2H", "5H", "4H"])
arr = tdi.array
result = np.sum(tdi)
expected = Timedelta(hours=17)
assert isinstance(result, Timedelta)
assert result == expected
result = np.sum(arr)
assert isinstance(result, Timedelta)
assert result == expected
def test_sum_2d_skipna_false(self):
arr = np.arange(8).astype(np.int64).view("m8[s]").astype("m8[ns]").reshape(4, 2)
arr[-1, -1] = "Nat"
tda = TimedeltaArray(arr)
result = tda.sum(skipna=False)
assert result is pd.NaT
result = tda.sum(axis=0, skipna=False)
expected = pd.TimedeltaIndex([Timedelta(seconds=12), pd.NaT])._values
tm.assert_timedelta_array_equal(result, expected)
result = tda.sum(axis=1, skipna=False)
expected = pd.TimedeltaIndex(
[
Timedelta(seconds=1),
Timedelta(seconds=5),
Timedelta(seconds=9),
pd.NaT,
]
)._values
tm.assert_timedelta_array_equal(result, expected)
# Adding a Timestamp makes this a test for DatetimeArray.std
@pytest.mark.parametrize(
"add",
[
Timedelta(0),
pd.Timestamp("2021-01-01"),
pd.Timestamp("2021-01-01", tz="UTC"),
pd.Timestamp("2021-01-01", tz="Asia/Tokyo"),
],
)
def test_std(self, add):
tdi = pd.TimedeltaIndex(["0H", "4H", "NaT", "4H", "0H", "2H"]) + add
arr = tdi.array
result = arr.std(skipna=True)
expected = Timedelta(hours=2)
assert isinstance(result, Timedelta)
assert result == expected
result = tdi.std(skipna=True)
assert isinstance(result, Timedelta)
assert result == expected
if getattr(arr, "tz", None) is None:
result = nanops.nanstd(np.asarray(arr), skipna=True)
assert isinstance(result, Timedelta)
assert result == expected
result = arr.std(skipna=False)
assert result is pd.NaT
result = tdi.std(skipna=False)
assert result is pd.NaT
if getattr(arr, "tz", None) is None:
result = nanops.nanstd(np.asarray(arr), skipna=False)
assert result is pd.NaT
def test_median(self):
tdi = pd.TimedeltaIndex(["0H", "3H", "NaT", "5H06m", "0H", "2H"])
arr = tdi.array
result = arr.median(skipna=True)
expected = Timedelta(hours=2)
assert isinstance(result, Timedelta)
assert result == expected
result = tdi.median(skipna=True)
assert isinstance(result, Timedelta)
assert result == expected
result = arr.median(skipna=False)
assert result is pd.NaT
result = tdi.median(skipna=False)
assert result is pd.NaT
def test_mean(self):
tdi = pd.TimedeltaIndex(["0H", "3H", "NaT", "5H06m", "0H", "2H"])
arr = tdi._data
# manually verified result
expected = Timedelta(arr.dropna()._ndarray.mean())
result = arr.mean()
assert result == expected
result = arr.mean(skipna=False)
assert result is pd.NaT
result = arr.dropna().mean(skipna=False)
assert result == expected
result = arr.mean(axis=0)
assert result == expected
def test_mean_2d(self):
tdi = pd.timedelta_range("14 days", periods=6)
tda = tdi._data.reshape(3, 2)
result = tda.mean(axis=0)
expected = tda[1]
tm.assert_timedelta_array_equal(result, expected)
result = tda.mean(axis=1)
expected = tda[:, 0] + Timedelta(hours=12)
tm.assert_timedelta_array_equal(result, expected)
result = tda.mean(axis=None)
expected = tdi.mean()
assert result == expected