A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/arrays/sparse/test_arithmetics.py

530 lines
20 KiB

import operator
import numpy as np
import pytest
from pandas.compat import np_version_under1p20
import pandas as pd
import pandas._testing as tm
from pandas.core import ops
from pandas.core.arrays.sparse import (
SparseArray,
SparseDtype,
)
@pytest.fixture(params=["integer", "block"])
def kind(request):
"""kind kwarg to pass to SparseArray/SparseSeries"""
return request.param
@pytest.fixture(params=[True, False])
def mix(request):
# whether to operate op(sparse, dense) instead of op(sparse, sparse)
return request.param
class TestSparseArrayArithmetics:
_base = np.array
_klass = SparseArray
def _assert(self, a, b):
# We have to use tm.assert_sp_array_equal. See GH #45126
tm.assert_numpy_array_equal(a, b)
def _check_numeric_ops(self, a, b, a_dense, b_dense, mix: bool, op):
# Check that arithmetic behavior matches non-Sparse Series arithmetic
if isinstance(a_dense, np.ndarray):
expected = op(pd.Series(a_dense), b_dense).values
elif isinstance(b_dense, np.ndarray):
expected = op(a_dense, pd.Series(b_dense)).values
else:
raise NotImplementedError
with np.errstate(invalid="ignore", divide="ignore"):
if mix:
result = op(a, b_dense).to_dense()
else:
result = op(a, b).to_dense()
self._assert(result, expected)
def _check_bool_result(self, res):
assert isinstance(res, self._klass)
assert isinstance(res.dtype, SparseDtype)
assert res.dtype.subtype == np.bool_
assert isinstance(res.fill_value, bool)
def _check_comparison_ops(self, a, b, a_dense, b_dense):
with np.errstate(invalid="ignore"):
# Unfortunately, trying to wrap the computation of each expected
# value is with np.errstate() is too tedious.
#
# sparse & sparse
self._check_bool_result(a == b)
self._assert((a == b).to_dense(), a_dense == b_dense)
self._check_bool_result(a != b)
self._assert((a != b).to_dense(), a_dense != b_dense)
self._check_bool_result(a >= b)
self._assert((a >= b).to_dense(), a_dense >= b_dense)
self._check_bool_result(a <= b)
self._assert((a <= b).to_dense(), a_dense <= b_dense)
self._check_bool_result(a > b)
self._assert((a > b).to_dense(), a_dense > b_dense)
self._check_bool_result(a < b)
self._assert((a < b).to_dense(), a_dense < b_dense)
# sparse & dense
self._check_bool_result(a == b_dense)
self._assert((a == b_dense).to_dense(), a_dense == b_dense)
self._check_bool_result(a != b_dense)
self._assert((a != b_dense).to_dense(), a_dense != b_dense)
self._check_bool_result(a >= b_dense)
self._assert((a >= b_dense).to_dense(), a_dense >= b_dense)
self._check_bool_result(a <= b_dense)
self._assert((a <= b_dense).to_dense(), a_dense <= b_dense)
self._check_bool_result(a > b_dense)
self._assert((a > b_dense).to_dense(), a_dense > b_dense)
self._check_bool_result(a < b_dense)
self._assert((a < b_dense).to_dense(), a_dense < b_dense)
def _check_logical_ops(self, a, b, a_dense, b_dense):
# sparse & sparse
self._check_bool_result(a & b)
self._assert((a & b).to_dense(), a_dense & b_dense)
self._check_bool_result(a | b)
self._assert((a | b).to_dense(), a_dense | b_dense)
# sparse & dense
self._check_bool_result(a & b_dense)
self._assert((a & b_dense).to_dense(), a_dense & b_dense)
self._check_bool_result(a | b_dense)
self._assert((a | b_dense).to_dense(), a_dense | b_dense)
@pytest.mark.parametrize("scalar", [0, 1, 3])
@pytest.mark.parametrize("fill_value", [None, 0, 2])
def test_float_scalar(
self, kind, mix, all_arithmetic_functions, fill_value, scalar, request
):
op = all_arithmetic_functions
if np_version_under1p20:
if op in [operator.floordiv, ops.rfloordiv]:
if op is operator.floordiv and scalar != 0:
pass
elif op is ops.rfloordiv and scalar == 0:
pass
else:
mark = pytest.mark.xfail(raises=AssertionError, reason="GH#38172")
request.node.add_marker(mark)
values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
a = self._klass(values, kind=kind, fill_value=fill_value)
self._check_numeric_ops(a, scalar, values, scalar, mix, op)
def test_float_scalar_comparison(self, kind):
values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
a = self._klass(values, kind=kind)
self._check_comparison_ops(a, 1, values, 1)
self._check_comparison_ops(a, 0, values, 0)
self._check_comparison_ops(a, 3, values, 3)
a = self._klass(values, kind=kind, fill_value=0)
self._check_comparison_ops(a, 1, values, 1)
self._check_comparison_ops(a, 0, values, 0)
self._check_comparison_ops(a, 3, values, 3)
a = self._klass(values, kind=kind, fill_value=2)
self._check_comparison_ops(a, 1, values, 1)
self._check_comparison_ops(a, 0, values, 0)
self._check_comparison_ops(a, 3, values, 3)
def test_float_same_index_without_nans(self, kind, mix, all_arithmetic_functions):
# when sp_index are the same
op = all_arithmetic_functions
values = self._base([0.0, 1.0, 2.0, 6.0, 0.0, 0.0, 1.0, 2.0, 1.0, 0.0])
rvalues = self._base([0.0, 2.0, 3.0, 4.0, 0.0, 0.0, 1.0, 3.0, 2.0, 0.0])
a = self._klass(values, kind=kind, fill_value=0)
b = self._klass(rvalues, kind=kind, fill_value=0)
self._check_numeric_ops(a, b, values, rvalues, mix, op)
def test_float_same_index_with_nans(
self, kind, mix, all_arithmetic_functions, request
):
# when sp_index are the same
op = all_arithmetic_functions
if (
np_version_under1p20
and op is ops.rfloordiv
and not (mix and kind == "block")
):
mark = pytest.mark.xfail(raises=AssertionError, reason="GH#38172")
request.node.add_marker(mark)
values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
rvalues = self._base([np.nan, 2, 3, 4, np.nan, 0, 1, 3, 2, np.nan])
a = self._klass(values, kind=kind)
b = self._klass(rvalues, kind=kind)
self._check_numeric_ops(a, b, values, rvalues, mix, op)
def test_float_same_index_comparison(self, kind):
# when sp_index are the same
values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
rvalues = self._base([np.nan, 2, 3, 4, np.nan, 0, 1, 3, 2, np.nan])
a = self._klass(values, kind=kind)
b = self._klass(rvalues, kind=kind)
self._check_comparison_ops(a, b, values, rvalues)
values = self._base([0.0, 1.0, 2.0, 6.0, 0.0, 0.0, 1.0, 2.0, 1.0, 0.0])
rvalues = self._base([0.0, 2.0, 3.0, 4.0, 0.0, 0.0, 1.0, 3.0, 2.0, 0.0])
a = self._klass(values, kind=kind, fill_value=0)
b = self._klass(rvalues, kind=kind, fill_value=0)
self._check_comparison_ops(a, b, values, rvalues)
def test_float_array(self, kind, mix, all_arithmetic_functions):
op = all_arithmetic_functions
values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
rvalues = self._base([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan])
a = self._klass(values, kind=kind)
b = self._klass(rvalues, kind=kind)
self._check_numeric_ops(a, b, values, rvalues, mix, op)
self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
a = self._klass(values, kind=kind, fill_value=0)
b = self._klass(rvalues, kind=kind)
self._check_numeric_ops(a, b, values, rvalues, mix, op)
a = self._klass(values, kind=kind, fill_value=0)
b = self._klass(rvalues, kind=kind, fill_value=0)
self._check_numeric_ops(a, b, values, rvalues, mix, op)
a = self._klass(values, kind=kind, fill_value=1)
b = self._klass(rvalues, kind=kind, fill_value=2)
self._check_numeric_ops(a, b, values, rvalues, mix, op)
def test_float_array_different_kind(self, mix, all_arithmetic_functions):
op = all_arithmetic_functions
values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
rvalues = self._base([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan])
a = self._klass(values, kind="integer")
b = self._klass(rvalues, kind="block")
self._check_numeric_ops(a, b, values, rvalues, mix, op)
self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
a = self._klass(values, kind="integer", fill_value=0)
b = self._klass(rvalues, kind="block")
self._check_numeric_ops(a, b, values, rvalues, mix, op)
a = self._klass(values, kind="integer", fill_value=0)
b = self._klass(rvalues, kind="block", fill_value=0)
self._check_numeric_ops(a, b, values, rvalues, mix, op)
a = self._klass(values, kind="integer", fill_value=1)
b = self._klass(rvalues, kind="block", fill_value=2)
self._check_numeric_ops(a, b, values, rvalues, mix, op)
def test_float_array_comparison(self, kind):
values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
rvalues = self._base([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan])
a = self._klass(values, kind=kind)
b = self._klass(rvalues, kind=kind)
self._check_comparison_ops(a, b, values, rvalues)
self._check_comparison_ops(a, b * 0, values, rvalues * 0)
a = self._klass(values, kind=kind, fill_value=0)
b = self._klass(rvalues, kind=kind)
self._check_comparison_ops(a, b, values, rvalues)
a = self._klass(values, kind=kind, fill_value=0)
b = self._klass(rvalues, kind=kind, fill_value=0)
self._check_comparison_ops(a, b, values, rvalues)
a = self._klass(values, kind=kind, fill_value=1)
b = self._klass(rvalues, kind=kind, fill_value=2)
self._check_comparison_ops(a, b, values, rvalues)
def test_int_array(self, kind, mix, all_arithmetic_functions):
op = all_arithmetic_functions
# have to specify dtype explicitly until fixing GH 667
dtype = np.int64
values = self._base([0, 1, 2, 0, 0, 0, 1, 2, 1, 0], dtype=dtype)
rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=dtype)
a = self._klass(values, dtype=dtype, kind=kind)
assert a.dtype == SparseDtype(dtype)
b = self._klass(rvalues, dtype=dtype, kind=kind)
assert b.dtype == SparseDtype(dtype)
self._check_numeric_ops(a, b, values, rvalues, mix, op)
self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
a = self._klass(values, fill_value=0, dtype=dtype, kind=kind)
assert a.dtype == SparseDtype(dtype)
b = self._klass(rvalues, dtype=dtype, kind=kind)
assert b.dtype == SparseDtype(dtype)
self._check_numeric_ops(a, b, values, rvalues, mix, op)
a = self._klass(values, fill_value=0, dtype=dtype, kind=kind)
assert a.dtype == SparseDtype(dtype)
b = self._klass(rvalues, fill_value=0, dtype=dtype, kind=kind)
assert b.dtype == SparseDtype(dtype)
self._check_numeric_ops(a, b, values, rvalues, mix, op)
a = self._klass(values, fill_value=1, dtype=dtype, kind=kind)
assert a.dtype == SparseDtype(dtype, fill_value=1)
b = self._klass(rvalues, fill_value=2, dtype=dtype, kind=kind)
assert b.dtype == SparseDtype(dtype, fill_value=2)
self._check_numeric_ops(a, b, values, rvalues, mix, op)
def test_int_array_comparison(self, kind):
dtype = "int64"
# int32 NI ATM
values = self._base([0, 1, 2, 0, 0, 0, 1, 2, 1, 0], dtype=dtype)
rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=dtype)
a = self._klass(values, dtype=dtype, kind=kind)
b = self._klass(rvalues, dtype=dtype, kind=kind)
self._check_comparison_ops(a, b, values, rvalues)
self._check_comparison_ops(a, b * 0, values, rvalues * 0)
a = self._klass(values, dtype=dtype, kind=kind, fill_value=0)
b = self._klass(rvalues, dtype=dtype, kind=kind)
self._check_comparison_ops(a, b, values, rvalues)
a = self._klass(values, dtype=dtype, kind=kind, fill_value=0)
b = self._klass(rvalues, dtype=dtype, kind=kind, fill_value=0)
self._check_comparison_ops(a, b, values, rvalues)
a = self._klass(values, dtype=dtype, kind=kind, fill_value=1)
b = self._klass(rvalues, dtype=dtype, kind=kind, fill_value=2)
self._check_comparison_ops(a, b, values, rvalues)
@pytest.mark.parametrize("fill_value", [True, False, np.nan])
def test_bool_same_index(self, kind, fill_value):
# GH 14000
# when sp_index are the same
values = self._base([True, False, True, True], dtype=np.bool_)
rvalues = self._base([True, False, True, True], dtype=np.bool_)
a = self._klass(values, kind=kind, dtype=np.bool_, fill_value=fill_value)
b = self._klass(rvalues, kind=kind, dtype=np.bool_, fill_value=fill_value)
self._check_logical_ops(a, b, values, rvalues)
@pytest.mark.parametrize("fill_value", [True, False, np.nan])
def test_bool_array_logical(self, kind, fill_value):
# GH 14000
# when sp_index are the same
values = self._base([True, False, True, False, True, True], dtype=np.bool_)
rvalues = self._base([True, False, False, True, False, True], dtype=np.bool_)
a = self._klass(values, kind=kind, dtype=np.bool_, fill_value=fill_value)
b = self._klass(rvalues, kind=kind, dtype=np.bool_, fill_value=fill_value)
self._check_logical_ops(a, b, values, rvalues)
def test_mixed_array_float_int(self, kind, mix, all_arithmetic_functions, request):
op = all_arithmetic_functions
if np_version_under1p20 and op in [operator.floordiv, ops.rfloordiv] and mix:
mark = pytest.mark.xfail(raises=AssertionError, reason="GH#38172")
request.node.add_marker(mark)
rdtype = "int64"
values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=rdtype)
a = self._klass(values, kind=kind)
b = self._klass(rvalues, kind=kind)
assert b.dtype == SparseDtype(rdtype)
self._check_numeric_ops(a, b, values, rvalues, mix, op)
self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
a = self._klass(values, kind=kind, fill_value=0)
b = self._klass(rvalues, kind=kind)
assert b.dtype == SparseDtype(rdtype)
self._check_numeric_ops(a, b, values, rvalues, mix, op)
a = self._klass(values, kind=kind, fill_value=0)
b = self._klass(rvalues, kind=kind, fill_value=0)
assert b.dtype == SparseDtype(rdtype)
self._check_numeric_ops(a, b, values, rvalues, mix, op)
a = self._klass(values, kind=kind, fill_value=1)
b = self._klass(rvalues, kind=kind, fill_value=2)
assert b.dtype == SparseDtype(rdtype, fill_value=2)
self._check_numeric_ops(a, b, values, rvalues, mix, op)
def test_mixed_array_comparison(self, kind):
rdtype = "int64"
# int32 NI ATM
values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=rdtype)
a = self._klass(values, kind=kind)
b = self._klass(rvalues, kind=kind)
assert b.dtype == SparseDtype(rdtype)
self._check_comparison_ops(a, b, values, rvalues)
self._check_comparison_ops(a, b * 0, values, rvalues * 0)
a = self._klass(values, kind=kind, fill_value=0)
b = self._klass(rvalues, kind=kind)
assert b.dtype == SparseDtype(rdtype)
self._check_comparison_ops(a, b, values, rvalues)
a = self._klass(values, kind=kind, fill_value=0)
b = self._klass(rvalues, kind=kind, fill_value=0)
assert b.dtype == SparseDtype(rdtype)
self._check_comparison_ops(a, b, values, rvalues)
a = self._klass(values, kind=kind, fill_value=1)
b = self._klass(rvalues, kind=kind, fill_value=2)
assert b.dtype == SparseDtype(rdtype, fill_value=2)
self._check_comparison_ops(a, b, values, rvalues)
def test_xor(self):
s = SparseArray([True, True, False, False])
t = SparseArray([True, False, True, False])
result = s ^ t
sp_index = pd.core.arrays.sparse.IntIndex(4, np.array([0, 1, 2], dtype="int32"))
expected = SparseArray([False, True, True], sparse_index=sp_index)
tm.assert_sp_array_equal(result, expected)
@pytest.mark.parametrize("op", [operator.eq, operator.add])
def test_with_list(op):
arr = SparseArray([0, 1], fill_value=0)
result = op(arr, [0, 1])
expected = op(arr, SparseArray([0, 1]))
tm.assert_sp_array_equal(result, expected)
def test_with_dataframe():
# GH#27910
arr = SparseArray([0, 1], fill_value=0)
df = pd.DataFrame([[1, 2], [3, 4]])
result = arr.__add__(df)
assert result is NotImplemented
def test_with_zerodim_ndarray():
# GH#27910
arr = SparseArray([0, 1], fill_value=0)
result = arr * np.array(2)
expected = arr * 2
tm.assert_sp_array_equal(result, expected)
@pytest.mark.parametrize("ufunc", [np.abs, np.exp])
@pytest.mark.parametrize(
"arr", [SparseArray([0, 0, -1, 1]), SparseArray([None, None, -1, 1])]
)
def test_ufuncs(ufunc, arr):
result = ufunc(arr)
fill_value = ufunc(arr.fill_value)
expected = SparseArray(ufunc(np.asarray(arr)), fill_value=fill_value)
tm.assert_sp_array_equal(result, expected)
@pytest.mark.parametrize(
"a, b",
[
(SparseArray([0, 0, 0]), np.array([0, 1, 2])),
(SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
(SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
(SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
(SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
],
)
@pytest.mark.parametrize("ufunc", [np.add, np.greater])
def test_binary_ufuncs(ufunc, a, b):
# can't say anything about fill value here.
result = ufunc(a, b)
expected = ufunc(np.asarray(a), np.asarray(b))
assert isinstance(result, SparseArray)
tm.assert_numpy_array_equal(np.asarray(result), expected)
def test_ndarray_inplace():
sparray = SparseArray([0, 2, 0, 0])
ndarray = np.array([0, 1, 2, 3])
ndarray += sparray
expected = np.array([0, 3, 2, 3])
tm.assert_numpy_array_equal(ndarray, expected)
def test_sparray_inplace():
sparray = SparseArray([0, 2, 0, 0])
ndarray = np.array([0, 1, 2, 3])
sparray += ndarray
expected = SparseArray([0, 3, 2, 3], fill_value=0)
tm.assert_sp_array_equal(sparray, expected)
@pytest.mark.parametrize("fill_value", [True, False])
def test_invert(fill_value):
arr = np.array([True, False, False, True])
sparray = SparseArray(arr, fill_value=fill_value)
result = ~sparray
expected = SparseArray(~arr, fill_value=not fill_value)
tm.assert_sp_array_equal(result, expected)
result = ~pd.Series(sparray)
expected = pd.Series(expected)
tm.assert_series_equal(result, expected)
result = ~pd.DataFrame({"A": sparray})
expected = pd.DataFrame({"A": expected})
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("fill_value", [0, np.nan])
@pytest.mark.parametrize("op", [operator.pos, operator.neg])
def test_unary_op(op, fill_value):
arr = np.array([0, 1, np.nan, 2])
sparray = SparseArray(arr, fill_value=fill_value)
result = op(sparray)
expected = SparseArray(op(arr), fill_value=op(fill_value))
tm.assert_sp_array_equal(result, expected)
@pytest.mark.parametrize("cons", [list, np.array, SparseArray])
def test_mismatched_length_cmp_op(cons):
left = SparseArray([True, True])
right = cons([True, True, True])
with pytest.raises(ValueError, match="operands have mismatched length"):
left & right