A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/tests/arrays/period/test_reductions.py

42 lines
1.0 KiB

import pytest
import pandas as pd
from pandas.core.arrays import period_array
class TestReductions:
def test_min_max(self):
arr = period_array(
[
"2000-01-03",
"2000-01-03",
"NaT",
"2000-01-02",
"2000-01-05",
"2000-01-04",
],
freq="D",
)
result = arr.min()
expected = pd.Period("2000-01-02", freq="D")
assert result == expected
result = arr.max()
expected = pd.Period("2000-01-05", freq="D")
assert result == expected
result = arr.min(skipna=False)
assert result is pd.NaT
result = arr.max(skipna=False)
assert result is pd.NaT
@pytest.mark.parametrize("skipna", [True, False])
def test_min_max_empty(self, skipna):
arr = period_array([], freq="D")
result = arr.min(skipna=skipna)
assert result is pd.NaT
result = arr.max(skipna=skipna)
assert result is pd.NaT