A PyQT GUI application for converting InfoLease report outputs into Excel files. Handles parsing and summarizing. Learns where files are meant to be store and compiles monthly and yearly summaries.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
InfoLeaseExtract/venv/Lib/site-packages/pandas/io/formats/info.py

1117 lines
32 KiB

from __future__ import annotations
from abc import (
ABC,
abstractmethod,
)
import sys
from textwrap import dedent
from typing import (
TYPE_CHECKING,
Iterable,
Iterator,
Mapping,
Sequence,
)
from pandas._config import get_option
from pandas._typing import (
Dtype,
WriteBuffer,
)
from pandas.core.indexes.api import Index
from pandas.io.formats import format as fmt
from pandas.io.formats.printing import pprint_thing
if TYPE_CHECKING:
from pandas.core.frame import (
DataFrame,
Series,
)
frame_max_cols_sub = dedent(
"""\
max_cols : int, optional
When to switch from the verbose to the truncated output. If the
DataFrame has more than `max_cols` columns, the truncated output
is used. By default, the setting in
``pandas.options.display.max_info_columns`` is used."""
)
show_counts_sub = dedent(
"""\
show_counts : bool, optional
Whether to show the non-null counts. By default, this is shown
only if the DataFrame is smaller than
``pandas.options.display.max_info_rows`` and
``pandas.options.display.max_info_columns``. A value of True always
shows the counts, and False never shows the counts."""
)
null_counts_sub = dedent(
"""
null_counts : bool, optional
.. deprecated:: 1.2.0
Use show_counts instead."""
)
frame_examples_sub = dedent(
"""\
>>> int_values = [1, 2, 3, 4, 5]
>>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
>>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0]
>>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values,
... "float_col": float_values})
>>> df
int_col text_col float_col
0 1 alpha 0.00
1 2 beta 0.25
2 3 gamma 0.50
3 4 delta 0.75
4 5 epsilon 1.00
Prints information of all columns:
>>> df.info(verbose=True)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 int_col 5 non-null int64
1 text_col 5 non-null object
2 float_col 5 non-null float64
dtypes: float64(1), int64(1), object(1)
memory usage: 248.0+ bytes
Prints a summary of columns count and its dtypes but not per column
information:
>>> df.info(verbose=False)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Columns: 3 entries, int_col to float_col
dtypes: float64(1), int64(1), object(1)
memory usage: 248.0+ bytes
Pipe output of DataFrame.info to buffer instead of sys.stdout, get
buffer content and writes to a text file:
>>> import io
>>> buffer = io.StringIO()
>>> df.info(buf=buffer)
>>> s = buffer.getvalue()
>>> with open("df_info.txt", "w",
... encoding="utf-8") as f: # doctest: +SKIP
... f.write(s)
260
The `memory_usage` parameter allows deep introspection mode, specially
useful for big DataFrames and fine-tune memory optimization:
>>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6)
>>> df = pd.DataFrame({
... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6),
... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6),
... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6)
... })
>>> df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 column_1 1000000 non-null object
1 column_2 1000000 non-null object
2 column_3 1000000 non-null object
dtypes: object(3)
memory usage: 22.9+ MB
>>> df.info(memory_usage='deep')
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 column_1 1000000 non-null object
1 column_2 1000000 non-null object
2 column_3 1000000 non-null object
dtypes: object(3)
memory usage: 165.9 MB"""
)
frame_see_also_sub = dedent(
"""\
DataFrame.describe: Generate descriptive statistics of DataFrame
columns.
DataFrame.memory_usage: Memory usage of DataFrame columns."""
)
frame_sub_kwargs = {
"klass": "DataFrame",
"type_sub": " and columns",
"max_cols_sub": frame_max_cols_sub,
"show_counts_sub": show_counts_sub,
"null_counts_sub": null_counts_sub,
"examples_sub": frame_examples_sub,
"see_also_sub": frame_see_also_sub,
"version_added_sub": "",
}
series_examples_sub = dedent(
"""\
>>> int_values = [1, 2, 3, 4, 5]
>>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
>>> s = pd.Series(text_values, index=int_values)
>>> s.info()
<class 'pandas.core.series.Series'>
Int64Index: 5 entries, 1 to 5
Series name: None
Non-Null Count Dtype
-------------- -----
5 non-null object
dtypes: object(1)
memory usage: 80.0+ bytes
Prints a summary excluding information about its values:
>>> s.info(verbose=False)
<class 'pandas.core.series.Series'>
Int64Index: 5 entries, 1 to 5
dtypes: object(1)
memory usage: 80.0+ bytes
Pipe output of Series.info to buffer instead of sys.stdout, get
buffer content and writes to a text file:
>>> import io
>>> buffer = io.StringIO()
>>> s.info(buf=buffer)
>>> s = buffer.getvalue()
>>> with open("df_info.txt", "w",
... encoding="utf-8") as f: # doctest: +SKIP
... f.write(s)
260
The `memory_usage` parameter allows deep introspection mode, specially
useful for big Series and fine-tune memory optimization:
>>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6)
>>> s = pd.Series(np.random.choice(['a', 'b', 'c'], 10 ** 6))
>>> s.info()
<class 'pandas.core.series.Series'>
RangeIndex: 1000000 entries, 0 to 999999
Series name: None
Non-Null Count Dtype
-------------- -----
1000000 non-null object
dtypes: object(1)
memory usage: 7.6+ MB
>>> s.info(memory_usage='deep')
<class 'pandas.core.series.Series'>
RangeIndex: 1000000 entries, 0 to 999999
Series name: None
Non-Null Count Dtype
-------------- -----
1000000 non-null object
dtypes: object(1)
memory usage: 55.3 MB"""
)
series_see_also_sub = dedent(
"""\
Series.describe: Generate descriptive statistics of Series.
Series.memory_usage: Memory usage of Series."""
)
series_sub_kwargs = {
"klass": "Series",
"type_sub": "",
"max_cols_sub": "",
"show_counts_sub": show_counts_sub,
"null_counts_sub": "",
"examples_sub": series_examples_sub,
"see_also_sub": series_see_also_sub,
"version_added_sub": "\n.. versionadded:: 1.4.0\n",
}
INFO_DOCSTRING = dedent(
"""
Print a concise summary of a {klass}.
This method prints information about a {klass} including
the index dtype{type_sub}, non-null values and memory usage.
{version_added_sub}\
Parameters
----------
data : {klass}
{klass} to print information about.
verbose : bool, optional
Whether to print the full summary. By default, the setting in
``pandas.options.display.max_info_columns`` is followed.
buf : writable buffer, defaults to sys.stdout
Where to send the output. By default, the output is printed to
sys.stdout. Pass a writable buffer if you need to further process
the output.\
{max_cols_sub}
memory_usage : bool, str, optional
Specifies whether total memory usage of the {klass}
elements (including the index) should be displayed. By default,
this follows the ``pandas.options.display.memory_usage`` setting.
True always show memory usage. False never shows memory usage.
A value of 'deep' is equivalent to "True with deep introspection".
Memory usage is shown in human-readable units (base-2
representation). Without deep introspection a memory estimation is
made based in column dtype and number of rows assuming values
consume the same memory amount for corresponding dtypes. With deep
memory introspection, a real memory usage calculation is performed
at the cost of computational resources.
{show_counts_sub}{null_counts_sub}
Returns
-------
None
This method prints a summary of a {klass} and returns None.
See Also
--------
{see_also_sub}
Examples
--------
{examples_sub}
"""
)
def _put_str(s: str | Dtype, space: int) -> str:
"""
Make string of specified length, padding to the right if necessary.
Parameters
----------
s : Union[str, Dtype]
String to be formatted.
space : int
Length to force string to be of.
Returns
-------
str
String coerced to given length.
Examples
--------
>>> pd.io.formats.info._put_str("panda", 6)
'panda '
>>> pd.io.formats.info._put_str("panda", 4)
'pand'
"""
return str(s)[:space].ljust(space)
def _sizeof_fmt(num: int | float, size_qualifier: str) -> str:
"""
Return size in human readable format.
Parameters
----------
num : int
Size in bytes.
size_qualifier : str
Either empty, or '+' (if lower bound).
Returns
-------
str
Size in human readable format.
Examples
--------
>>> _sizeof_fmt(23028, '')
'22.5 KB'
>>> _sizeof_fmt(23028, '+')
'22.5+ KB'
"""
for x in ["bytes", "KB", "MB", "GB", "TB"]:
if num < 1024.0:
return f"{num:3.1f}{size_qualifier} {x}"
num /= 1024.0
return f"{num:3.1f}{size_qualifier} PB"
def _initialize_memory_usage(
memory_usage: bool | str | None = None,
) -> bool | str:
"""Get memory usage based on inputs and display options."""
if memory_usage is None:
memory_usage = get_option("display.memory_usage")
return memory_usage
class BaseInfo(ABC):
"""
Base class for DataFrameInfo and SeriesInfo.
Parameters
----------
data : DataFrame or Series
Either dataframe or series.
memory_usage : bool or str, optional
If "deep", introspect the data deeply by interrogating object dtypes
for system-level memory consumption, and include it in the returned
values.
"""
data: DataFrame | Series
memory_usage: bool | str
@property
@abstractmethod
def dtypes(self) -> Iterable[Dtype]:
"""
Dtypes.
Returns
-------
dtypes : sequence
Dtype of each of the DataFrame's columns (or one series column).
"""
@property
@abstractmethod
def dtype_counts(self) -> Mapping[str, int]:
"""Mapping dtype - number of counts."""
@property
@abstractmethod
def non_null_counts(self) -> Sequence[int]:
"""Sequence of non-null counts for all columns or column (if series)."""
@property
@abstractmethod
def memory_usage_bytes(self) -> int:
"""
Memory usage in bytes.
Returns
-------
memory_usage_bytes : int
Object's total memory usage in bytes.
"""
@property
def memory_usage_string(self) -> str:
"""Memory usage in a form of human readable string."""
return f"{_sizeof_fmt(self.memory_usage_bytes, self.size_qualifier)}\n"
@property
def size_qualifier(self) -> str:
size_qualifier = ""
if self.memory_usage:
if self.memory_usage != "deep":
# size_qualifier is just a best effort; not guaranteed to catch
# all cases (e.g., it misses categorical data even with object
# categories)
if (
"object" in self.dtype_counts
or self.data.index._is_memory_usage_qualified()
):
size_qualifier = "+"
return size_qualifier
@abstractmethod
def render(
self,
*,
buf: WriteBuffer[str] | None,
max_cols: int | None,
verbose: bool | None,
show_counts: bool | None,
) -> None:
pass
class DataFrameInfo(BaseInfo):
"""
Class storing dataframe-specific info.
"""
def __init__(
self,
data: DataFrame,
memory_usage: bool | str | None = None,
):
self.data: DataFrame = data
self.memory_usage = _initialize_memory_usage(memory_usage)
@property
def dtype_counts(self) -> Mapping[str, int]:
return _get_dataframe_dtype_counts(self.data)
@property
def dtypes(self) -> Iterable[Dtype]:
"""
Dtypes.
Returns
-------
dtypes
Dtype of each of the DataFrame's columns.
"""
return self.data.dtypes
@property
def ids(self) -> Index:
"""
Column names.
Returns
-------
ids : Index
DataFrame's column names.
"""
return self.data.columns
@property
def col_count(self) -> int:
"""Number of columns to be summarized."""
return len(self.ids)
@property
def non_null_counts(self) -> Sequence[int]:
"""Sequence of non-null counts for all columns or column (if series)."""
return self.data.count()
@property
def memory_usage_bytes(self) -> int:
if self.memory_usage == "deep":
deep = True
else:
deep = False
return self.data.memory_usage(index=True, deep=deep).sum()
def render(
self,
*,
buf: WriteBuffer[str] | None,
max_cols: int | None,
verbose: bool | None,
show_counts: bool | None,
) -> None:
printer = DataFrameInfoPrinter(
info=self,
max_cols=max_cols,
verbose=verbose,
show_counts=show_counts,
)
printer.to_buffer(buf)
class SeriesInfo(BaseInfo):
"""
Class storing series-specific info.
"""
def __init__(
self,
data: Series,
memory_usage: bool | str | None = None,
):
self.data: Series = data
self.memory_usage = _initialize_memory_usage(memory_usage)
def render(
self,
*,
buf: WriteBuffer[str] | None = None,
max_cols: int | None = None,
verbose: bool | None = None,
show_counts: bool | None = None,
) -> None:
if max_cols is not None:
raise ValueError(
"Argument `max_cols` can only be passed "
"in DataFrame.info, not Series.info"
)
printer = SeriesInfoPrinter(
info=self,
verbose=verbose,
show_counts=show_counts,
)
printer.to_buffer(buf)
@property
def non_null_counts(self) -> Sequence[int]:
return [self.data.count()]
@property
def dtypes(self) -> Iterable[Dtype]:
return [self.data.dtypes]
@property
def dtype_counts(self):
from pandas.core.frame import DataFrame
return _get_dataframe_dtype_counts(DataFrame(self.data))
@property
def memory_usage_bytes(self) -> int:
"""Memory usage in bytes.
Returns
-------
memory_usage_bytes : int
Object's total memory usage in bytes.
"""
if self.memory_usage == "deep":
deep = True
else:
deep = False
return self.data.memory_usage(index=True, deep=deep)
class InfoPrinterAbstract:
"""
Class for printing dataframe or series info.
"""
def to_buffer(self, buf: WriteBuffer[str] | None = None) -> None:
"""Save dataframe info into buffer."""
table_builder = self._create_table_builder()
lines = table_builder.get_lines()
if buf is None: # pragma: no cover
buf = sys.stdout
fmt.buffer_put_lines(buf, lines)
@abstractmethod
def _create_table_builder(self) -> TableBuilderAbstract:
"""Create instance of table builder."""
class DataFrameInfoPrinter(InfoPrinterAbstract):
"""
Class for printing dataframe info.
Parameters
----------
info : DataFrameInfo
Instance of DataFrameInfo.
max_cols : int, optional
When to switch from the verbose to the truncated output.
verbose : bool, optional
Whether to print the full summary.
show_counts : bool, optional
Whether to show the non-null counts.
"""
def __init__(
self,
info: DataFrameInfo,
max_cols: int | None = None,
verbose: bool | None = None,
show_counts: bool | None = None,
):
self.info = info
self.data = info.data
self.verbose = verbose
self.max_cols = self._initialize_max_cols(max_cols)
self.show_counts = self._initialize_show_counts(show_counts)
@property
def max_rows(self) -> int:
"""Maximum info rows to be displayed."""
return get_option("display.max_info_rows", len(self.data) + 1)
@property
def exceeds_info_cols(self) -> bool:
"""Check if number of columns to be summarized does not exceed maximum."""
return bool(self.col_count > self.max_cols)
@property
def exceeds_info_rows(self) -> bool:
"""Check if number of rows to be summarized does not exceed maximum."""
return bool(len(self.data) > self.max_rows)
@property
def col_count(self) -> int:
"""Number of columns to be summarized."""
return self.info.col_count
def _initialize_max_cols(self, max_cols: int | None) -> int:
if max_cols is None:
return get_option("display.max_info_columns", self.col_count + 1)
return max_cols
def _initialize_show_counts(self, show_counts: bool | None) -> bool:
if show_counts is None:
return bool(not self.exceeds_info_cols and not self.exceeds_info_rows)
else:
return show_counts
def _create_table_builder(self) -> DataFrameTableBuilder:
"""
Create instance of table builder based on verbosity and display settings.
"""
if self.verbose:
return DataFrameTableBuilderVerbose(
info=self.info,
with_counts=self.show_counts,
)
elif self.verbose is False: # specifically set to False, not necessarily None
return DataFrameTableBuilderNonVerbose(info=self.info)
else:
if self.exceeds_info_cols:
return DataFrameTableBuilderNonVerbose(info=self.info)
else:
return DataFrameTableBuilderVerbose(
info=self.info,
with_counts=self.show_counts,
)
class SeriesInfoPrinter(InfoPrinterAbstract):
"""Class for printing series info.
Parameters
----------
info : SeriesInfo
Instance of SeriesInfo.
verbose : bool, optional
Whether to print the full summary.
show_counts : bool, optional
Whether to show the non-null counts.
"""
def __init__(
self,
info: SeriesInfo,
verbose: bool | None = None,
show_counts: bool | None = None,
):
self.info = info
self.data = info.data
self.verbose = verbose
self.show_counts = self._initialize_show_counts(show_counts)
def _create_table_builder(self) -> SeriesTableBuilder:
"""
Create instance of table builder based on verbosity.
"""
if self.verbose or self.verbose is None:
return SeriesTableBuilderVerbose(
info=self.info,
with_counts=self.show_counts,
)
else:
return SeriesTableBuilderNonVerbose(info=self.info)
def _initialize_show_counts(self, show_counts: bool | None) -> bool:
if show_counts is None:
return True
else:
return show_counts
class TableBuilderAbstract(ABC):
"""
Abstract builder for info table.
"""
_lines: list[str]
info: BaseInfo
@abstractmethod
def get_lines(self) -> list[str]:
"""Product in a form of list of lines (strings)."""
@property
def data(self) -> DataFrame | Series:
return self.info.data
@property
def dtypes(self) -> Iterable[Dtype]:
"""Dtypes of each of the DataFrame's columns."""
return self.info.dtypes
@property
def dtype_counts(self) -> Mapping[str, int]:
"""Mapping dtype - number of counts."""
return self.info.dtype_counts
@property
def display_memory_usage(self) -> bool:
"""Whether to display memory usage."""
return bool(self.info.memory_usage)
@property
def memory_usage_string(self) -> str:
"""Memory usage string with proper size qualifier."""
return self.info.memory_usage_string
@property
def non_null_counts(self) -> Sequence[int]:
return self.info.non_null_counts
def add_object_type_line(self) -> None:
"""Add line with string representation of dataframe to the table."""
self._lines.append(str(type(self.data)))
def add_index_range_line(self) -> None:
"""Add line with range of indices to the table."""
self._lines.append(self.data.index._summary())
def add_dtypes_line(self) -> None:
"""Add summary line with dtypes present in dataframe."""
collected_dtypes = [
f"{key}({val:d})" for key, val in sorted(self.dtype_counts.items())
]
self._lines.append(f"dtypes: {', '.join(collected_dtypes)}")
class DataFrameTableBuilder(TableBuilderAbstract):
"""
Abstract builder for dataframe info table.
Parameters
----------
info : DataFrameInfo.
Instance of DataFrameInfo.
"""
def __init__(self, *, info: DataFrameInfo):
self.info: DataFrameInfo = info
def get_lines(self) -> list[str]:
self._lines = []
if self.col_count == 0:
self._fill_empty_info()
else:
self._fill_non_empty_info()
return self._lines
def _fill_empty_info(self) -> None:
"""Add lines to the info table, pertaining to empty dataframe."""
self.add_object_type_line()
self.add_index_range_line()
self._lines.append(f"Empty {type(self.data).__name__}")
@abstractmethod
def _fill_non_empty_info(self) -> None:
"""Add lines to the info table, pertaining to non-empty dataframe."""
@property
def data(self) -> DataFrame:
"""DataFrame."""
return self.info.data
@property
def ids(self) -> Index:
"""Dataframe columns."""
return self.info.ids
@property
def col_count(self) -> int:
"""Number of dataframe columns to be summarized."""
return self.info.col_count
def add_memory_usage_line(self) -> None:
"""Add line containing memory usage."""
self._lines.append(f"memory usage: {self.memory_usage_string}")
class DataFrameTableBuilderNonVerbose(DataFrameTableBuilder):
"""
Dataframe info table builder for non-verbose output.
"""
def _fill_non_empty_info(self) -> None:
"""Add lines to the info table, pertaining to non-empty dataframe."""
self.add_object_type_line()
self.add_index_range_line()
self.add_columns_summary_line()
self.add_dtypes_line()
if self.display_memory_usage:
self.add_memory_usage_line()
def add_columns_summary_line(self) -> None:
self._lines.append(self.ids._summary(name="Columns"))
class TableBuilderVerboseMixin(TableBuilderAbstract):
"""
Mixin for verbose info output.
"""
SPACING: str = " " * 2
strrows: Sequence[Sequence[str]]
gross_column_widths: Sequence[int]
with_counts: bool
@property
@abstractmethod
def headers(self) -> Sequence[str]:
"""Headers names of the columns in verbose table."""
@property
def header_column_widths(self) -> Sequence[int]:
"""Widths of header columns (only titles)."""
return [len(col) for col in self.headers]
def _get_gross_column_widths(self) -> Sequence[int]:
"""Get widths of columns containing both headers and actual content."""
body_column_widths = self._get_body_column_widths()
return [
max(*widths)
for widths in zip(self.header_column_widths, body_column_widths)
]
def _get_body_column_widths(self) -> Sequence[int]:
"""Get widths of table content columns."""
strcols: Sequence[Sequence[str]] = list(zip(*self.strrows))
return [max(len(x) for x in col) for col in strcols]
def _gen_rows(self) -> Iterator[Sequence[str]]:
"""
Generator function yielding rows content.
Each element represents a row comprising a sequence of strings.
"""
if self.with_counts:
return self._gen_rows_with_counts()
else:
return self._gen_rows_without_counts()
@abstractmethod
def _gen_rows_with_counts(self) -> Iterator[Sequence[str]]:
"""Iterator with string representation of body data with counts."""
@abstractmethod
def _gen_rows_without_counts(self) -> Iterator[Sequence[str]]:
"""Iterator with string representation of body data without counts."""
def add_header_line(self) -> None:
header_line = self.SPACING.join(
[
_put_str(header, col_width)
for header, col_width in zip(self.headers, self.gross_column_widths)
]
)
self._lines.append(header_line)
def add_separator_line(self) -> None:
separator_line = self.SPACING.join(
[
_put_str("-" * header_colwidth, gross_colwidth)
for header_colwidth, gross_colwidth in zip(
self.header_column_widths, self.gross_column_widths
)
]
)
self._lines.append(separator_line)
def add_body_lines(self) -> None:
for row in self.strrows:
body_line = self.SPACING.join(
[
_put_str(col, gross_colwidth)
for col, gross_colwidth in zip(row, self.gross_column_widths)
]
)
self._lines.append(body_line)
def _gen_non_null_counts(self) -> Iterator[str]:
"""Iterator with string representation of non-null counts."""
for count in self.non_null_counts:
yield f"{count} non-null"
def _gen_dtypes(self) -> Iterator[str]:
"""Iterator with string representation of column dtypes."""
for dtype in self.dtypes:
yield pprint_thing(dtype)
class DataFrameTableBuilderVerbose(DataFrameTableBuilder, TableBuilderVerboseMixin):
"""
Dataframe info table builder for verbose output.
"""
def __init__(
self,
*,
info: DataFrameInfo,
with_counts: bool,
):
self.info = info
self.with_counts = with_counts
self.strrows: Sequence[Sequence[str]] = list(self._gen_rows())
self.gross_column_widths: Sequence[int] = self._get_gross_column_widths()
def _fill_non_empty_info(self) -> None:
"""Add lines to the info table, pertaining to non-empty dataframe."""
self.add_object_type_line()
self.add_index_range_line()
self.add_columns_summary_line()
self.add_header_line()
self.add_separator_line()
self.add_body_lines()
self.add_dtypes_line()
if self.display_memory_usage:
self.add_memory_usage_line()
@property
def headers(self) -> Sequence[str]:
"""Headers names of the columns in verbose table."""
if self.with_counts:
return [" # ", "Column", "Non-Null Count", "Dtype"]
return [" # ", "Column", "Dtype"]
def add_columns_summary_line(self) -> None:
self._lines.append(f"Data columns (total {self.col_count} columns):")
def _gen_rows_without_counts(self) -> Iterator[Sequence[str]]:
"""Iterator with string representation of body data without counts."""
yield from zip(
self._gen_line_numbers(),
self._gen_columns(),
self._gen_dtypes(),
)
def _gen_rows_with_counts(self) -> Iterator[Sequence[str]]:
"""Iterator with string representation of body data with counts."""
yield from zip(
self._gen_line_numbers(),
self._gen_columns(),
self._gen_non_null_counts(),
self._gen_dtypes(),
)
def _gen_line_numbers(self) -> Iterator[str]:
"""Iterator with string representation of column numbers."""
for i, _ in enumerate(self.ids):
yield f" {i}"
def _gen_columns(self) -> Iterator[str]:
"""Iterator with string representation of column names."""
for col in self.ids:
yield pprint_thing(col)
class SeriesTableBuilder(TableBuilderAbstract):
"""
Abstract builder for series info table.
Parameters
----------
info : SeriesInfo.
Instance of SeriesInfo.
"""
def __init__(self, *, info: SeriesInfo):
self.info: SeriesInfo = info
def get_lines(self) -> list[str]:
self._lines = []
self._fill_non_empty_info()
return self._lines
@property
def data(self) -> Series:
"""Series."""
return self.info.data
def add_memory_usage_line(self) -> None:
"""Add line containing memory usage."""
self._lines.append(f"memory usage: {self.memory_usage_string}")
@abstractmethod
def _fill_non_empty_info(self) -> None:
"""Add lines to the info table, pertaining to non-empty series."""
class SeriesTableBuilderNonVerbose(SeriesTableBuilder):
"""
Series info table builder for non-verbose output.
"""
def _fill_non_empty_info(self) -> None:
"""Add lines to the info table, pertaining to non-empty series."""
self.add_object_type_line()
self.add_index_range_line()
self.add_dtypes_line()
if self.display_memory_usage:
self.add_memory_usage_line()
class SeriesTableBuilderVerbose(SeriesTableBuilder, TableBuilderVerboseMixin):
"""
Series info table builder for verbose output.
"""
def __init__(
self,
*,
info: SeriesInfo,
with_counts: bool,
):
self.info = info
self.with_counts = with_counts
self.strrows: Sequence[Sequence[str]] = list(self._gen_rows())
self.gross_column_widths: Sequence[int] = self._get_gross_column_widths()
def _fill_non_empty_info(self) -> None:
"""Add lines to the info table, pertaining to non-empty series."""
self.add_object_type_line()
self.add_index_range_line()
self.add_series_name_line()
self.add_header_line()
self.add_separator_line()
self.add_body_lines()
self.add_dtypes_line()
if self.display_memory_usage:
self.add_memory_usage_line()
def add_series_name_line(self):
self._lines.append(f"Series name: {self.data.name}")
@property
def headers(self) -> Sequence[str]:
"""Headers names of the columns in verbose table."""
if self.with_counts:
return ["Non-Null Count", "Dtype"]
return ["Dtype"]
def _gen_rows_without_counts(self) -> Iterator[Sequence[str]]:
"""Iterator with string representation of body data without counts."""
yield from self._gen_dtypes()
def _gen_rows_with_counts(self) -> Iterator[Sequence[str]]:
"""Iterator with string representation of body data with counts."""
yield from zip(
self._gen_non_null_counts(),
self._gen_dtypes(),
)
def _get_dataframe_dtype_counts(df: DataFrame) -> Mapping[str, int]:
"""
Create mapping between datatypes and their number of occurrences.
"""
# groupby dtype.name to collect e.g. Categorical columns
return df.dtypes.value_counts().groupby(lambda x: x.name).sum()